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Abstract

In modern economies, production is organized in large-scale complex networks of firms
trading intermediate inputs with each other. Larger Indian firms selling inputs to other firms
tend to have more customers, tend to be used more intensively by their customers, and tend
to have larger customers. Motivated by these regularities, I propose a novel empirical model
of trade featuring endogenous formation of input-output linkages between spatially distant
firms. The empirical model consists of (a) a theoretical framework that accommodates first
order features of firm-to-firm network data, (b) a maximum likelihood framework for struc-
tural estimation that is uninhibited by the scale of data, and (c) a procedure for counterfactual
analysis that speaks to the effects of micro- and macro- shocks to the spatial network econ-
omy. In the model, differences in production costs across firms arise not just from differences
in productivity but also from finding the most cost-effective suppliers of intermediate inputs.
Firms with low production costs end up larger because they find more customers, are used
more intensively by their customers and in turn their customers lower production costs and
end up larger themselves. The model is estimated using novel micro-data on firm-to-firm
sales between Indian firms. The model’s fit is good. The estimated model implies that a 10%
decline in inter-state border frictions in India leads to welfare gains ranging between 1% and
8% across districts. Moreover, over half of the variation in changes in firms’ sales to other
firms can be explained by endogenous changes in the network structure.
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1 Introduction

Heterogeneity in production costs across firms is at the heart of modern general equilibrium
models of firm heterogeneity and trade. Yet differences in firms’ production costs are typically
attributed to differences in productivity across firms. With firms operating in production net-
works, differences in production costs arise not just from differences in productivity but also
from finding the most cost-effective suppliers of intermediate inputs. While trade does not di-
rectly affect the former, trade in intermediate inputs influences the latter. General equilibrium
theories of trade with firms differing only in productivity do not grapple with microscopic het-
erogeneity in the extensive and intensive margins of firm-to-firm trade in intermediate inputs —
who buys from whom and how much? How does endogenous formation of customer-supplier
linkages between firms and the resultant network architecture drive differences in firms’ overall
sales, ability to sell across multiple destinations, and aggregate patterns of trade? How do we
evaluate the impact of market integration, technology improvements, and improvements in al-
locative efficiency on aggregate outcomes when the production network of firms reorganizes in
response to these shocks?

In this paper, I present a novel framework to evaluate the aggregate and firm-level conse-
quences of micro- and macro- shocks to the spatial economy and answer these questions in four
steps. First, I use novel micro-data to document empirical regularities arising from a new decom-
position of firms’ sales that underscores the salience of endogenous network formation between
firms. Second, I develop a model of trade between multiple locations featuring endogenous for-
mation of firm-to-firm production networks that not only rationalizes micro-data on firm-to-firm
sales but is also consistent with structural gravity at the aggregate level. Third, I devise a proce-
dure to structurally estimate the model that circumvents computational difficulties pervasive in
estimation of network formation models with large numbers of firms. Fourth, I propose a pro-
cedure to evaluate counterfactual outcomes that accounts for randomness in network formation
without requiring simulation of large networks which can be computationally burdensome due
to interdependence in link formation.

Using data on 103 million firm-to-firm relationships assembled from administrative VAT
records spanning across 5 years and pertaining to around 2.5 million Indian firms located across
141 districts, I find that firms with higher sales to other firms (a) tend to have more customers,
(b) tend to be used more intensively by their customers and (c) tend to sell to larger customers.
The first margin explains 35% of the variation in firms’ sales, an additional 46% is explained
by the second margin, leaving 19% for the third. On one hand, the third margin suggests that
firms’ heterogeneity in input sales is partially driven by demand from larger customers down-
stream in the supply chain. On the other hand, the first and the second margins suggest that
firms’ choice of suppliers and the intensity with which to use their goods potentially influences
the attractiveness of the firm as a supplier to its own potential customers. While the former
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points to the role of network linkages in driving differences between firms, the latter highlights
the role of endogenous formation of firm-to-firm linkages in it, both along the extensive and in-
tensive margins. These regularities suggest that endogenous network formation is pertinent to
understanding the origins of firm heterogeneity.

The starting point of the theory is the Ricardian model of trade between multiple locations
with geographic barriers and imperfect competition as in Bernard et al. (2003). I depart from
their representative agent framework by accommodating heterogeneous consumer preferences,
heterogeneous technological requirements by firms, and arbitrary production networks between
firms.1 Firms’ production processes consist of multiple input requirements. Potential suppliers
differ in the suitability of their goods for each of these requirements. Firms randomly encounter
potential suppliers and select the most cost-effective suppliers for their production requirements.
When selecting their suppliers, firms are more likely to select (and for a larger proportion of their
requirements) a potential supplier that is able to sell at a lower price and produces a good that
is more suitable for its production requirements. The ability of a potential supplier to sell at a
lower price than another is regulated by (a) its idiosyncratic productivity, (b) the efficiency with
which its own suppliers were able to produce thus affording the firm a lower price for interme-
diate inputs, and (c) proximity to location of use thus having to incur lower geographic costs.
Firms with lower production costs thus not only attract more customers but are also used more
intensively in their customers’ production processes. Since these customers use cheaper inputs,
they end up with lower production costs themselves and become cost-effective suppliers to their
customers. In the cross-section, firms with low production costs end up larger because they have
more customers, are used more intensively by their customers and have larger customers.

Differences in the suitability of potential suppliers’ goods for a firm’s production require-
ments feature as match-specific productivities across firm pairs in a manner similar to the dis-
crete choice framework. This leads to a multinomial logit model of supplier choice for each of the
firm’s production requirements. The estimation equation recognizes that while there is a positive
probability of a firm sourcing inputs from every other firm, sourcing inputs for only a discrete
number of requirements can give rise to sparsity in firm-to-firm connections. This sparsity can
be extreme as is observed in the data where the number of firm-to-firm connections are many or-
ders of magnitude lower than its potential given the number of firms in the economy. Predictions
for inter-firm trade then allow estimation of the model utilizing the full volume of micro-data on
firm-to-firm transactions via the method of maximum likelihood. Semi-parametric estimation of
the model implies that firms’ fixed effects serve as sufficient statistics for their implied marginal
costs and bilateral inter-district fixed effects as a structural gravity specification for estimating
trade frictions. Such estimation programs typically entail a high-dimensional non-linear opti-

1While Costinot et al. (2011) and Caliendo and Parro (2014) allow for sectoral heterogeneity and intersectoral
linkages in a Ricardian model of trade, they do not allow for arbitrary production networks between firms and are
unable to accommodate the vast heterogeneity in input sourcing patterns at the firm-level observed in data.
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mization problem that quickly becomes cumbersome with large numbers of fixed effects. On
the contrary, I show that these fixed effects can be computed in closed-form thus avoiding the
problem altogether.

For counterfactual analysis, I propose a procedure that departs from the exact hat algebra
approach commonly used in trade models (see Dekle et al. (2008) and Costinot and Rodríguez-
Clare (2014)). In aggregate models of trade, the exact hat algebra approach evaluates the change
in aggregate outcomes in response to shocks. In those models, aggregate data coincides with
the expected value of aggregate outcomes in the initial state. In contrast, my model accommo-
dates granularity and acknowledges that the observed data corresponds to only one of many
possible realizations under the initial state. The data generating process implied by the model
is therefore non-degenerate and hat algebra cannot be used as is. To evaluate counterfactual
outcomes, I therefore use the model to obtain the expected value of the data generating process
in the initial state and use hat algebra to evaluate the expected value in the counterfactual state.
The model and the procedure are rich enough to not only speak about aggregate effects of aggre-
gate shocks but also firm-level effects of aggregate shocks and aggregate and firm-level effects
of micro-shocks.2

Using the estimated model, I conduct three counterfactual experiments. First, I evaluate the
consequences of reducing inter-state border frictions in the context of the recent Goods and Ser-
vices Tax reform in India that aimed to mitigate such barriers to trade. I find that a 10% decline
in border frictions leads to sizable welfare gains across districts ranging between 1% and 8%.
Moreover, over half of the variation in changes in firms’ sales to other firms can be explained by
endogenous changes in the network structure.

Second, I examine firm-level implications of a uniform decline in external trade frictions. As
trade frictions decline, larger firms with low production costs become more successful at farther
or less remote destinations as they attract more customers or get used more intensively among
existing customers. At the same time, the average size of their customers decline. This comes at
the expense of firms with higher production costs who are now less successful both locally and
elsewhere but the average size of their customers increase. Consequently, large firms’ sales to
other firms shrink where as those of a large majority of firms in the lower quantiles expands.

Third, policy reforms can sometimes manifest as heterogeneous microeconomic shocks across
firms. To illustrate the effects of micro-shocks on aggregate outcomes through the lens of the
model, I evaluate the consequences of neutralizing firm-level distortions when they correlate
positively versus negatively with size. I find that in either case endogenous changes in the net-

2In contemporaneous work, Dingel and Tintelnot (2020) take a related approach for counterfactual analysis in
commuting choice models that feature granularity. In their case, non-degeneracy of counterfactual outcomes arises
from a finite number of individuals making residential and workplace decisions. In this paper, non-degeneracy of
counterfactual outcomes arises from interdependent decisions on input sourcing made by a finite number of firms.
A similar problem of indeterminacy of the trade equilibrium in relative wages across locations arises in both cases.
While they introduce the notion of continuum-case rational expectations to resolve this issue, I show that relative
wages are deterministic under a large network approximation despite granularity at firm-level.
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work structure explain a dominant majority of changes in firms’ sales to other firms. At the
aggregate level, neutralizing positively size-dependent distortions has smaller welfare gains but
positive terms of trade effects for a majority of districts whereas neutralizing negatively size-
dependent distortions has larger welfare gains but negative terms of trade effects for a majority
of districts.

Related Literature This paper contributes to four strands of literature. First, this paper is re-
lated to the nascent literature on endogenous production networks in general equilibrium which
can be broadly classified into two categories. The first (Eaton et al. (2016); Oberfield (2018); Ace-
moglu and Azar (2020); Boehm and Oberfield (2020)) models formation of linkages as the out-
come of selection from a discrete menu of choices whereas the second (Lim (2017); Taschereau-
Dumouchel (2017); Huneeus (2018)) models formation of linkages between firms as the outcome
of “love of variety” in input sourcing while being subject to relationship costs.3 This paper is
more closely related to the former to take advantage of extreme value functional forms that al-
low tractable empirical characterization for estimation. While this paper shares the mechanism
for supplier selection with Oberfield (2018) and Boehm and Oberfield (2020) and formulation of
technology and preferences with Eaton et al. (2016), none of these papers explicitly characterize
both the extensive and intensive margins of inter-firm trade that the model here delivers. While
Oberfield (2018) and Boehm and Oberfield (2020) do not consider trade between locations, the
model in Eaton et al. (2016) features trade. In contrast to Eaton et al. (2016), where there are
no differences in suitability of goods across firms’ requirements and estimation of the model re-
quires use of simulation-based methods, the model here uniquely recognizes the fact that firms’
input sourcing decisions comprise finding the supplier that not only offers the lowest price but
is also the most suitable for production requirements. This feature allows the model to be esti-
mated directly using the full volume of data on firm-to-firm sales via maximum likelihood.

Second, this paper is related to a long literature on firm heterogeneity (for example, Jovanovic
(1982); Hopenhayn (1992); Axtell (2001); Melitz (2003); Klette and Kortum (2004); Luttmer (2007);
Arkolakis (2016)) and in particular the branch that studies the heterogeneity among firms arising
from their engagement in input-output linkages — Oberfield (2018) and Bernard et al. (2019a).
The model here houses two sources of firm heterogeneity — from idiosyncratic productivities as
in Kortum (1997) and from match-specific productivities and engagement in input-output link-
ages as in Oberfield (2018). Unlike Oberfield (2018), the model accommodates heterogeneity in
the number of input suppliers across firms as well as in the intensity of use of suppliers across
their customers. The model thus allows for variation in firms’ average intensity of use by their
customers. In the data, this margin explains 46% of the variation in firms’ sales. The model-

3Other complementary approaches to endogenous production network formation include Carvalho and
Voigtlander (2014), Chaney (2014) and Tintelnot et al. (2018) and to supply chain formation include Costinot et al.
(2013), Fally and Hillberry (2018), and Antràs and de Gortari (2020).
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ing approach here is distinct from Bernard et al. (2019a) who use a fixed cost formulation that
necessitates use of simulation-based estimation methods.

Third, the paper also relates to a growing literature on propagation of shocks and aggrega-
tion in distorted production networks including Long and Plosser (1983), Ciccone (2002), Gabaix
(2011), Jones (2011), Acemoglu et al. (2012, 2017), Swiecki (2017), Caliendo et al. (2017b), Baqaee
(2018), Liu (2019), Baqaee and Farhi (2019a,b, 2020), and Bigio and LaO (2020). Some of these
papers allow for non-Cobb–Douglas technologies and thus endogenize the intensity with which
different inputs are used. However, they do not investigate which combinations of inputs will
be used—that is, the extensive margin of firm-to-firm trade —which features prominently in this
paper.

Finally, this paper is related to a rich literature in international trade. In the model, trade is
driven by comparative advantage as in Ricardian trade models (Dornbusch et al. (1977); Eaton
and Kortum (2002); Bernard et al. (2003)). However, since the model accommodates heterogene-
ity in consumer preferences and technological requirements across firms, comparative advan-
tage is determined by each consumer and firm demanding inputs rather than at the level of each
market. This allows the model to rationalize patterns of firm participation in international trade
within the Ricardian framework which are typically relegated to new trade theory models such
as Melitz (2003) and Eaton et al. (2011).4 This paper is also related to the branch of the trade lit-
erature that develops firm-level models of importing that accommodate heterogeneity in input
sourcing behavior between firms (for example, Halpern et al. (2015); Antràs et al. (2017); Blaum
et al. (2018); Ramanarayanan (2020)). While these papers consider models where firms choose
the set of locations to source intermediate inputs or the share of intermediate inputs that are im-
ported, here I develop a more disaggregated model where firms choose both the set of suppliers
across multiple locations for intermediate inputs and the share purchased from each of them. In
terms of context, it is also related to the branch of the trade literature that studies spatial distribu-
tion of economic activity (for example, Allen and Arkolakis (2014), Redding (2016), and Caliendo
et al. (2017a)) and its branch that studies the welfare consequences of intra-national trade barri-
ers (for example, Donaldson (2018); Asturias et al. (2018); Fajgelbaum et al. (2018)). The model
also shares features with papers that emphasize the role of granularity in trade models such as
Eaton et al. (2013), Armenter and Koren (2014), and Gaubert and Itskhoki (2018).

Outline Section 2 describes the data and the corresponding empirical regularities. Section 3
describes the model and lays out the probabilistic assumptions under which model predictions
on inter-firm trade shares are derived. Section 4 begins with the estimation framework for firms’
marginal costs, trade frictions and dispersion of firms’ raw efficiencies. It then provides the
procedure for conducting counterfactual analysis. Section 5 discusses how the well the model

4For example, Eaton et al. (2011) state that the Ricardian framework with a fixed range of commodities used in
Bernard et al. (2003) does not deliver the feature that a larger market attracts more firms as observed in French data.
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replicates empirical regularities. Section 6 examines model implications for counterfactual sce-
narios, one that leads to improvements in allocative efficiency and another that causes market
integration. Section 7 concludes.

Notation Throughout the paper, a firm is indexed by s when it is a seller of intermediate inputs
or goods for final consumption and by b when it is a buyer of intermediate inputs. Households
are indexed by i. A location is indexed by o when it is the origin of a trade flow and typically
where firm s is located. Similarly, it is indexed by d when it is the destination of a trade flow and
typically where firm b is located or household i resides. The set of all locations is denoted by
J . The set of all firms is denoted byM and the subset located at o is denoted byMo. The set
of all households is denoted by L and the subset located at d is denoted by Ld. The number of
elements in these sets are denoted as M = |M|, L = |L|, Mo = |Mo|, and Ld = |Ld|.

2 Data & Empirical Regularities

2.1 Sources of Data

The primary dataset for this paper consists of the universe of intra-state firm-to-firm transac-
tions assembled from commercial tax authorities of five Indian states (viz. Gujarat, Maharashtra,
Tamil Nadu, Odisha, and West Bengal) between 2011-12 and 2015-16. Put together, these states
had a nominal GDP of $738 billion in 2015-16, accounting for nearly 40% of national GDP. Among
these states, the largest (Maharashtra) accounts for roughly 14% of national GDP while the small-
est (Odisha) accounts for a little over 2%. I complement this dataset with data on the universe
of inter-state firm-to-firm transactions obtained from the Ministry of Finance in the Government
of India running for the same period. It includes transactions between all firms registered under
the value-added tax system in their respective state. The combined dataset consists of transac-
tions between goods-producing firms and does not include the services sector. It records 103
million inter-firm relationships between approximately 2.5 million firms across the years. Firms
are located across 141 districts in these 5 states. See Appendix A.1 for summary statistics.5

2.2 Network Margins of Firm Heterogeneity & Trade

Indian firms are vastly heterogeneous in size, a pervasive finding in studies of firm-level
data. Intuitively, firms’ outcomes are shaped not only by their own intrinsic characteristics, like
productivity, but also by the characteristics of the firms – suppliers and customers – that they

5Other papers using firm-to-firm transactions micro-data include Alfaro-Urena et al. (2019) from Costa Rica,
Demir et al. (2018, 2020) from Turkey, Bernard et al. (2019b); Carvalho et al. (2016); Miyauchi (2019) from Japan,
Bernard et al. (2019a); Tintelnot et al. (2018) from Belgium, Huneeus (2018) from Chile, Carrillo et al. (2017) from
Ecuador, Spray (2019) from Uganda and Gadenne et al. (2019) from the Indian state of West Bengal.
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connect with. In this paper, I am concerned with firm heterogeneity arising from their behavior
in production networks along two margins — the upstream and the downstream margins. On
one hand, a firm’s decision of supplier choice on the extensive and intensive margins affects not
only its own marginal cost but potentially that of customers that purchase goods from it. Firm
behavior on the upstream margin thus affects firms downstream to it in the supply chain. On
the other hand, a firm’s decision of quantity to produce and sell to customers affects its suppliers
through demand for inputs from them. Firm behavior on the downstream margin thus affects
firms upstream to it in the supply chain. While the downstream margin is operational in mod-
els with exogenous production networks, the upstream margin requires a model of endogenous
network formation between firms — one where firms choose their suppliers and the intensity
with which they use inputs from those suppliers.

To shed light on the economic importance of these margins and guide the main features of the
model I will develop in Section 3, I leverage the rich network structure of the dataset to conduct
a simple decomposition of firms’ sales to other firms into three margins: number of customers,
average intensity of use among those customers, and average customer size. Formally, input
sales of firm s located at o can be decomposed into these three factors according to the following
identity.

input saleso(s) = No(s)×
∑d ∑b∈Md

πod(s, b)
No(s)

×
∑d ∑b∈Md

πod(s, b)× input costsd(b)

∑d ∑b∈Md
πod(s, b)

. (2.1)

In this expression, No(s) is the number of customers and πod(s, b) is the intensity with which
firm b located at d uses goods from seller s. Specifically, it is calculated as:

πod(s, b) =
salesod(s, b)

input costsd(b)
,

where salesod(s, b) denotes the value of goods sold by firm s to firm b and input costsd(b) =

∑o ∑s∈Mo salesod(s, b). Through variation in number of customers, the first factor captures the
attractiveness of the firm to potential customers looking for input suppliers. Similarly through
variation in intensity of use by customers, the second factor captures the attractiveness of the
firm on the intensive margin of input choice by its customers. The third factor measures average
size of customers as inferred from a weighted average of their input costs. The first two factors
constitute the upstream margin and capture the direct importance of the firm in the production
network since it captures how cost-effective the firm is irrespective of the characteristics of the
customers it sells to. The third factor constitutes the downstream margin and captures the indi-
rect importance of the firm in the production network through the importance of its customers,
its customers’ customers and so on. In addition, the upstream margin of firm’s sales also cap-
tures the overall intensity of use of the firm — the sum of cost shares of all firms in the economy
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that can be attributed purchases from it.6

I compute the share of variance of firms’ sales that is explained by each of these factors.7

Column (1) in Table 2.1 reports the results of the decomposition. Four-fifths of the variance in
firms’ sales can be attributed to the upstream margin leaving the rest for the downstream mar-
gin. It implies that larger firms are likely to have more customers (explains 35% of the variance),
be used more intensively by those customers (46%), and have larger customers (19%). All three
factors covary positively with sales and contribute a non-trivial share to the variance. The pos-
itive covariance of the downstream margin can be rationalized as follows. Firms with higher
demand for their own goods produce larger quantities and to do so they purchase higher quan-
tities of inputs from their suppliers. In turn, their suppliers end up with higher demand and
they source larger quantities from their own suppliers and so on. Therefore, in the cross-section
one observes that larger firms have larger customers on average. This points to the importance
of supply chain linkages between firms even when the network structure is exogenously fixed.

However, it is the outsized contribution of the upstream margin that highlights the impor-
tance of endogenous network formation through two potential channels. First, when firms
choose to source from more cost-effective suppliers, they are likely to inherit lower marginal
costs from their suppliers. This makes them attractive to their own customers who become
larger in turn. Therefore, in the cross-section one would observe a positive correlation between
firms’ sales and number of customers. This suggests that the endogeneity of production net-
works along the extensive margin of inter-firm trade is important. Second, when suppliers’
goods are substitutable in a firms’ input demand system, more cost-effective firms will account
for a larger share of material costs of their customers. Since those customers source cheaper in-
puts intensively, they are likely to inherit lower marginal costs from their suppliers. This makes
them attractive to their own customers and they become larger themselves. Therefore, in the
cross-section one would observe a positive correlation between firms’ sales and average inten-
sity of use by customers. This suggests that the endogeneity of production networks along the
intensive margin of inter-firm trade is important.

Furthermore, trade across space is costly and economic activity across space exhibits large
dispersion. How does the relative position of firms across space affect their outcomes? How
does geography affect the aforementioned margins of firm heterogeneity? To investigate this, I
construct a similar decomposition at a more disaggregated level for firms’ destination-specific

6The upstream margin is sometimes referred to as the firm’s weighted out-degree. In recent work, Acemoglu
et al. (2012) coin this term for similar statistics at the industry level.

7In short, if a variable X can be decomposed into R factors, {Xr}R
r=1 such that X = X1 · X2 · · ·XR, then the share

of variance of X that can be attributed to any factor Xr is Cov(ln X,ln Xr)
Var[ln X]

. While these shares sum to unity by additivity
of the covariance operator, they are not constrained to be positive individually. For example, see Klenow and
Rodríguez-Clare (1997) for use in growth accounting and Eaton et al. (2004) for regression-based decomposition of
margins of trade.
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Table 2.1: Network Margins of Firm Heterogeneity & Trade

(1) (2) (3)

# Customers 35% 37% 67%
Intensity per Customer 46% 57% 20%
Average Customer Size 19% 6% 13%

Fixed Effects:
Seller×Year — X —
Origin×Year — — X

Data Level:
Seller×Year • — —
Seller×Destination×Year — • —
Origin×Destination×Year — — •

# observations 5.6×106 18.2×106 58,390

Note. Column (1) reports the contribution of factors: # customers, intensity per customer, and average customer
size, to the variance of firms’ sales (as per equation (2.1)). Column (2) reports the contribution of those factors to
the variance of firms’ destination-specific sales (as per equation (A.1)). Column (3) reports the same for trade flows
between districts (as per equation (A.2)). See Appendix A for details and alternative specifications.

sales and at a more aggregated level for trade flows between districts.8 Column (2) in Table 2.1
reports results of variance decomposition of firm’s destination-specific sales while controlling
for firm-level fixed effects. This is done to capture the variation in individual firms’ sales across
multiple destinations. The upstream margin accounts for 94% of the variation leaving 6% for
the downstream margin. Column (3) in Table 2.1 reports results of variance decomposition of
aggregate trade flows between districts while controlling for origin fixed effects. The upstream
margin accounts for 87% of the variation leaving 13% for the downstream margin. Since the
upstream margin explains the lion’s share of the variation in both cases, these results underscore
the salience of geography in endogenous network formation between firms.

Taking stock, I find that firms that are larger also tend to have more customers, tend to be
used more intensively by their customers, and tend to have larger customers. Of course, these
decompositions capture equilibrium relationships and are not causal; nevertheless, they make
clear that understanding the characteristics of firms’ network is key to understanding origins of
firm heterogeneity. While the economic intuition behind these results is straightforward, the de-
composition results are, to the best of my knowledge, new to the literature.9 With this in mind, I

8Further details are provided in Appendix A.
9In related work, Huneeus (2018) and Bernard et al. (2019a) use Chilean and Belgian production network

micro-data respectively to decompose firms’ sales to other firms into # customers and sales per customer. At the
aggregate level using trade flows, it is also related to the decomposition into extensive and intensive margins
of trade such as in Eaton et al. (2011, 2016) and Fernandes et al. (2018). Here, I show that sales per customer
in the former and the intensive margin in the latter can be further decomposed into two factors such that the
decomposition delineates the role of endogenous network formation.
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develop a model of endogenous production network formation in the next section that expressly
takes these findings into account and leads to a multinomial logit model of supplier choice for
estimation.

3 Theoretical Framework

In this section, I first describe a model of trade between multiple locations that accommodates
heterogeneity in consumer preferences, heterogeneity in technological requirements of firms and
arbitrary production networks. Subsequently, I employ functional form assumptions that make
the model tractable and allow to derive aggregate implications before proceeding to describe the
framework for estimation in the next section.

3.1 Economic Environment

The model economy E ≡ {M,L,J } consists of many firms and households at many loca-
tions. Firms produce using local labor and intermediate inputs sourced from suppliers poten-
tially spread across multiple locations. Each household supplies one unit of labor inelastically
to local firms. Firms rebate any profits to local households. Trade between locations is subject to
iceberg trade costs denoted by τod ≥ 1. That is, a firm producing at o needs to ship τod units of a
good for one unit of good to arrive at d.

3.1.1 Technology and Market Structure

Firms’ production processes involve combining labor and accomplishing a set of tasks. To
accomplish tasks, firms source intermediate inputs from other firms. In particular, the produc-
tion function for any firm b at location d is defined over labor and a discrete number of tasks
(indexed by k ∈ Kd(b) ≡ {1, · · · , Kd(b)}) as:

yd(b) = zd(b)Qd (ld(b), {md(b, k) : k ∈ Kd(b)}) ,

md(b, k) = ∑
s∈Sd(b)

mod(s, b, k),

where ld(b) is the amount of labor input used by firm b, md(b, k) is the quantity of materials uti-
lized to accomplish task k, zd(b) is the idiosyncratic Hicks-neutral productivity with which firm
b produces, and Kd(b) is the number of tasks in firm b’s production function. Qd (•) is strictly
quasi-concave, exhibits constant returns to scale and is increasing and continuous in ld(b) and
{md(b, k) : k ∈ Kd(b)}. Labor is an essential factor of production, that is, Qd (0, {md(b, k)}k) = 0.
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Materials sourcing is subject to search frictions. Among all the firms in the economy, firm b
encounters only a few and can source intermediate inputs to accomplish tasks only from those
firms. This restricted set of potential suppliers is denoted by Sd(b). While outputs of potential
suppliers are perfectly substitutable for accomplishing any task, they differ in their suitability
for the task in question, captured by their respective match-specific productivities. For each of
its tasks, firm b selects the supplier that offers the lowest effective price. Importantly, firm b may
choose the same supplier for more than one tasks.

The market structure for intermediate inputs and final consumption is characterized by Bertrand
competition. Firms face limit pricing behavior when sourcing intermediate inputs and engage in
limit pricing themselves when supplying their goods for intermediate input use by other firms
and for final consumption by households. This means that the lowest cost supplier for a firm or
household sets a limit price to just undercut the next lowest cost supplier available to the firm
for intermediate input use or to the household for final consumption.10

I now turn to firms’ cost minimization problem. For firm b, selecting the cost-minimizing in-
put bundle consists of first selecting the most cost-effective supplier for each task among the set
of potential suppliers, then choosing the quantity of inputs to purchase from those selected sup-
pliers for each of the tasks and the amount of labor to hire. In other words, firm b first chooses
who to source inputs from and then how much to buy from each of them.

For any particular task k in firm b’s production function, the cost-effectiveness of a supplier s
from location o in Sd(b) depends on four factors: (a) the marginal cost of s, denoted co(s); (b) the
trade cost faced by s of shipping goods to d, τod; (c) the match-specific productivity when b uti-
lizes the output of s to accomplish the task, denoted by aod (s, b, k), and (d) the markup charged
by s when it sells its output to b for accomplishing the task, denoted m̄od (s, b, k). For task k, firm
b chooses the supplier that offers the cheapest price, that is,

s∗d(b, k) = arg min
s∈Sd(b)

{
m̄od (s, b, k) co(s)τod

aod(s, b, k)

}
. (3.1)

With limit pricing, the markup is determined by how much lower the effective cost faced by
the best supplier is relative to the second best. Hence, the effective price faced by b for task k,
denoted by pd(b, k), is given by

pd(b, k) = min
s∈Sd(b)\{s∗d(b,k)}

{
co(s)τod

aod(s, b, k)

}
. (3.2)

Now, taking wage wd and effective prices {pd(b, k) : k ∈ Kd(b)} as given, the firm’s unit cost
function can be defined as:

10This market structure assumption traces back to Grossman and Helpman (1991) and also appears in Bernard
et al. (2003), Klette and Kortum (2004), and Peters (2020).
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cd(b) = min
{ld(b),{md(b,k):k∈Kd(b)}}

wdld(b) + ∑
k∈Kd(b)

pd (b, k)md (b, k) (3.3)

subject to zd(b)Q (ld(b), {md(b, k) : k ∈ Kd(b)}) = 1

With the cost function as defined above, the profit of a firm s located at o can be expressed as

Πo(s) = ∑
d

∑
b∈Md

∑
k∈Kd(b)

(m̄od (s, b, k)− 1)
co(s)τod

aod(s, b, k)
mod(s, b, k)

+ ∑
d

∑
i∈Ld

∑
n∈Nd(i)

(m̄od (s, i, n)− 1)
co(s)τod

aod(s, i, n)
qod(s, i, n),

where mod(s, b, k) denotes the quantity of goods sold by firm s to customer b for task k and
qod(s, i, n) denotes the quantity of goods sold by firm s to households i for need n (described
below). The quantity of goods sold mod(s, b, k) or qod(s, i, n) is positive if s is the most effective
supplier for task k or need n respectively and zero otherwise.

3.1.2 Household Preferences

Households consume goods produced by firms to fulfill a set of needs. In particular, the util-
ity function for any household i at location d is defined over a discrete number of needs (indexed
by n ∈ Nd(i) ≡ {1, · · · , Nd(i)}) as:

ud (i) = U ({qd(i, n) : n ∈ Nd(i)}) ,

qd(i, n) = ∑
s∈Sd(i)

qod(s, i, n),

where qd(i, n) is the quantity of goods consumed to fulfill need n and Nd(i) is the number of
needs in the utility function. U (•) is continuous, differentiable, increasing, and strictly quasi-
concave in {qd(i, n) : n ∈ Nd(i)} and all needs are normal.

Goods sourcing is subject to search frictions and is modeled similar to firms sourcing inputs.
Outputs of potential suppliers are perfectly substitutable for fulfilling any need but differ in
match-specific taste shocks. For each of its needs, household i selects the supplier that offers the
lowest effective price and can sometimes select the same supplier for more than one needs. For
household i, selecting the utility-maximizing consumption bundle comprises of first selecting
the most cost-effective supplier for each need among the set of potential suppliers and then of
choosing the quantity of goods to purchase from those selected suppliers for each of the needs.
For any particular need n in i’s utility function, the cost-effectiveness of a supplier s from lo-
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cation o in Sd(i) depends on four factors similar to those that affect firms sourcing inputs. In
particular, for need n, household i chooses the supplier that offers the cheapest price, that is,

s∗d(i, n) = arg min
s∈Sd(i)

{
m̄od (s, i, n) co(s)τod

aod(s, i, n)

}
(3.4)

The markup is again determined by how much lower the effective cost faced by the best sup-
plier is relative to the second best. The effective price faced by i for need n denoted by pd(i, n) is
then given by

pd(i, n) = min
s∈Sd(i)\{s∗d(i,n)}

{
co(s)τod

aod(s, i, n)

}
. (3.5)

Now, taking {pd(i, n) : n ∈ Nd(i)} as given, the household’s indirect utility function can be
defined as:

Vd(i) = max
{qd(i,n):n∈Nd(i)}

U ({qd(i, n) : n ∈ Nd(i)}) (3.6)

subject to ∑
n∈Nd(i)

pd(i, n)qd(i, n) = wd + Πd

where Πd =
∑s∈Md

Πd(b)
Ld

is the per capita profit rebated to households residing at o.

3.1.3 Equilibrium Definition and Characterization

Let σ ≡ {z, K, N, τ,S , a} denote the aggregate state of the economy. Here z denotes the
vector of idiosyncratic productivities of firms, K denotes the numbers of tasks of all firms, N
denotes the numbers of needs of all households, τ denotes the vector of trade costs across all
pairs of locations, S denotes the sets of potential suppliers of all firms and households, and a
denotes the vector of all match-specific productivities and match-specific taste shocks. All of
these objects are exogenous and defined below.

z ≡ {zo(s) : s ∈ Mo, o ∈ J } ,

K ≡ {Kd(b) : b ∈ Md, d ∈ J } ,

N ≡ {Nd(i) : i ∈ Ld, d ∈ J } ,

τ ≡ {τod : (o, d) ∈ J ×J } ,

S ≡ {Sd(b) : b ∈ Md, d ∈ J } ∪ {Sd(i) : i ∈ Ld, d ∈ J } ,

a ≡ {aod(s, b, k) : k ∈ Kd(b), (s, b) ∈ Mo ×Md, (o, d) ∈ J ×J }
∪ {aod(s, i, n) : n ∈ Nd(i), (s, i) ∈ Mo ×Ld, (o, d) ∈ J ×J } .
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An allocation in this economy is represented as ξ ≡ {l (σ) , m (σ) , q (σ) , y (σ)} and is defined
as a set of functions,

l (σ) ≡ {ld(b; σ) : b ∈ Md, d ∈ J } ,

m (σ) ≡ {mod(s, b, k; σ) : k ∈ Kd(b), (s, b) ∈ Mo ×Md, (o, d) ∈ J ×J } ,

q (σ) ≡ {qod(s, i, n; σ) : n ∈ Nd(i), (s, i) ∈ Mo ×Ld, (o, d) ∈ J ×J } ,

y (σ) ≡ {yo(s; σ) : s ∈ Ms, o ∈ J } ,

that map the realization of the state to intermediate input and labor quantities, quantities con-
sumed and quantities produced. A price system is represented as $ ≡ {c (σ) , p (σ) , w (σ)} and
is defined as a set of functions,

c (σ) ≡ {co(s; σ) : s ∈ Mo, o ∈ J } ,

p (σ) ≡ {pd (i, n; σ) : n ∈ Nd(i), i ∈ Ld, d ∈ J } ∪ {pd (b, k; σ) : k ∈ Kd(b), b ∈ Md, d ∈ J } ,

w (σ) ≡ {wd (σ) : d ∈ J } ,

that map the realization of the state to tasks’ prices for firms, needs’ prices for households, wage
at each location and marginal costs of firms. This leads to the definition of equilibrium in this
economy as follows.

Definition 1. For any given state σ, an equilibrium in this economy is defined as an allocation
and price system, (ξ, $) such that (a) households select suppliers for needs and firms select sup-
pliers for tasks according to equations (3.1) and (3.4) respectively; (b) firms set prices for other
firms and households according to equations (3.2) and (3.5) respectively; (c) households maxi-
mize utility according to equation (3.6); (d) firms minimize costs according to equation (3.3); and
(e) market clears for each firm’s goods and for labor at each location,

∑
d∈J

τod

 ∑
b∈Md

∑
k∈Kd(b)

mod(s, b, k) + ∑
i∈Ld

∑
n∈Nd(i)

qod(s, i, n)

 = yo(s),

∑
b∈Md

ld(b) = Ld.

This completes description of the economic environment in the model. Moving ahead, the
aggregate state can be divided into two parts. The first comprises of firms’ productivities,
firms’ numbers of tasks, households’ numbers of needs, and trade costs; this is denoted by
σ0 ≡ {z, K, N, τ}. The second part comprises of sets of potential suppliers for firms and house-
holds and match-specific productivities and taste shocks; this is denoted by σ1 ≡ {S , a}. While
σ0 narrows down the set of networks that could be realized as an outcome of the network for-
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mation process, σ1 pinpoints the exact network of firms that is realized. In the following sub-
sections, I specify a probabilistic model so as to characterize the aggregate trade equilibrium
between locations for any given σ0.

3.2 Probabilistic Model

The probabilistic model is specified in four parts. First, I state distributional assumptions
on firms’ productivities, firms’ numbers of tasks, and households’ numbers of needs. This re-
duces the dimensionality of the firm-level state variables z and K and household-level state
variables N so that they are characterized by parameters at the location level. Second, I de-
scribe the stochastic assumptions that govern random encounters with potential suppliers and
the choice of suppliers thereof. This specifies the distribution of the numbers of potential suppli-
ers available to each firm and each household (S) and that of the match-specific productivities
and match-specific taste shocks associated with those suppliers (a). Third, I make functional
form assumptions on technology {Qd (·) : d ∈ J } and preferences U (·). Finally, I characterize
the large economy limit of the model that enables aggregation and leads to the definition of the
aggregate trade equilibrium.

Firms’ productivities are drawn independently from Fréchet distributions parametrized such
that the mean and dispersion across firms vary by location and are given by the following as-
sumption.11

Assumption 1. Idiosyncratic ex ante productivities {zo(s) : s ∈ Mo} are drawn independently accord-
ing to the following Fréchet distribution:

P (zo(s) ≤ z) = e−Toz−θo 1 {z ≥ 0} .

where To and θo are respectively the scale and shape parameters of the productivity distribution at location
o.

For any location o, the average productivity of firms is determined by To and dispersion
in productivities is determined by θo. A higher To implies higher average productivity and a
higher θo implies lower dispersion in productivities. Firms’ numbers of tasks and households’
numbers of needs are drawn from zero-truncated Poisson distributions such that all firms have
at least one task in their production function and all households have at least one need in their
utility function.

11This functional form for heterogeneity in firm productivity comes from Bernard et al. (2003) and can be derived
from deeper assumptions on the process of innovation (for details, see Kortum (1997) and Eaton and Kortum (2001)).
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Assumption 2. The number of tasks {Kd(b) : b ∈ Md} are drawn independently according to the fol-
lowing zero-truncated Poisson distribution:

P (Kd(b) = Kd) =
e−κdκ

Kd
d

(1− e−κd)Kd!
.

The number of needs {Nd(i) : i ∈ Ld} are drawn independently according to the following zero-
truncated Poisson distribution:

P (Nd(i) = Nd) =
e−ηd η

Nd
d

(1− e−ηd) Nd!
.

The distributions of the number of tasks across locations is parametrized such that the inten-
sity κd varies by location. A higher κd implies that firms at d have a larger number of tasks on
average and hence the potential to source inputs from a larger number of suppliers. A similar
explanation holds for how households’ number of needs depends on ηd.

Next, I turn to stochastic assumptions that govern random encounters with potential sup-
pliers and the choice of suppliers thereof. Search frictions in the model are characterized by
firms and households encountering potential suppliers via independent Bernoulli trials. The
set of sets of potential suppliers S is therefore completely determined as the outcome of these
Bernoulli trials for meeting each firm. The success probabilities associated with these trials are
given by the following assumption.

Assumption 3. The probability with which firm b encounters firm s is given by

P (s ∈ Sd(b)) =
λ

M
,

where λ > 0. Similarly, the probability with which household i encounters firm s is also given by
P (s ∈ Sd(i)) = λ/M.

These success probabilities are decreasing in the total number of firms in the economy. In
economies with sufficiently large number of firms, these search frictions approximate Poisson
processes where firms and households encounter potential suppliers with rate λ for their tasks
and needs respectively.12 Match-specific productivities and taste shocks are drawn indepen-
dently for all potential suppliers for each of the tasks in firms’ production functions and needs
in households’ utility functions from a Pareto distribution.

Assumption 4. Match-specific productivities and taste shocks a are drawn independently according to

12For any firm b, the number of potential suppliers follows a binomial distribution, i.e., P (|Sd(b)| = Sd) =

(M
Sd
)
(

λ
M

)Sd
(

1− λ
M

)M−Sd
. For sufficiently large values of M, |Sd(b)|∼ Poisson (λ).
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the following Pareto distribution:

Fa(a) =
(

1− (a/a0)
−ζ
)

1 {a > a0}

with ζ < θo∀o ∈ J .

The shape parameter of this distribution ζ regulates the thickness of the right tails of the
match-specific productivity and taste shock distributions. The lower ζ is, the higher is the likeli-
hood of particularly high draws of match-specific productivities. With higher likelihood of high
draws, the choice of supplier (according to equations 3.1 and 3.4) is less sensitive to marginal
cost of the supplier or trade costs. The restriction that ζ < θo for all locations implies that the
likelihood of very high draws of idiosyncratic productivities is less than that of very high match-
specific productivities. This ensures that the price index is well-defined in the limiting economy.

I now turn to functional form assumptions on technology and preferences. Production func-
tions of firms are Cobb-Douglas in labor and tasks such that the materials share of costs of firms,
denoted by αd, varies by location. Similarly, utility functions defined on needs are also of the
Cobb-Douglas functional form. Tasks in production functions and needs in utilities feature sym-
metrically.

Assumption 5. For any firm b, Qd (·) takes the following Cobb-Douglas functional form:

Qd (ld (b) , {md(b, k) : k ∈ Kd(b)}) =
(

ld(b)
1− αd

)1−αd
(

∏k∈Kd(b) md(b, k)1/Kd(b)

αd

)αd

The marginal cost function is then given by:

cd (b) =
w1−αd

d

(
∏k∈Kd(b) pd(b, k)1/Kd(b)

)αd

zd(b)
(3.7)

For any household i, U (·) takes the following Cobb-Douglas functional form:

U ({qd(i, n) : n ∈ Nd(i)}) = ∏
n∈Nd(i)

qd(i, n)1/Nd(i)

The price index is then given by Pd (i) = ∏n∈Nd(i) pd(i, n)1/Nd(i).

Firms (or households) spend equal shares of costs across tasks (or needs). Although the elas-
ticity of substitution between tasks (or needs) is equal to unity, this formulation captures richer
patterns of substitution across outputs of other firms that are used to accomplish tasks (or fulfill
needs). This is because a potential supplier charging a lower price is likely to be selected for
a higher number of tasks by any firm and hence is likely to account for a higher cost share of
the firm. The extensive margin of firms’ input sourcing is determined by whether a potential
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supplier is chosen for at least one of the tasks whereas the intensive margin is determined by
how many tasks the potential supplier gets selected for. Both these margins of inter-firm trade
are determined endogenously in equilibrium.

To enable the theoretical model to make aggregate predictions, I consider a limiting economy
where firms and households are arranged on a continuum. In the limiting economy, the trade
equilibrium conditional on σ0 which is characterized by wages across locations {wd : d ∈ J }, is
deterministic.13 Thus, there is no aggregate uncertainty at any location in the limiting economy.
In particular, I adopt the large economy model due to Al-Najjar (2004) which is characterized by
a sequence of finite but increasingly large economies that progressively discretizes the unit con-
tinuum. The distribution of firms and households along the sequence is uniform. This allows
use of the law of large numbers in the limiting continuum to derive cross-sectional distributions
of effective prices and marginal costs for given wages. While effective prices of firms’ tasks and
marginal costs of firms might individually vary across realizations of σ1, their cross-sectional dis-
tributions at each location are invariant across all such realizations in the limiting economy. The
following definition formalizes the notion of the limiting economy in the context of this paper.

Definition 2. Consider a sequence of finite economies {Et : t ∈N} where Et ≡ {Mt,Lt,Jt} is
such that the tth economy has the formMt = {m1, · · · , mMt} ⊂ [0, 1] , Lt = {`1, · · · , `Lt} ⊂ [0, 1]

and Jt = J . The uniform distribution on Mt is given by UM
t
(
M0

t
)
=

M0
t

Mt
for all M0

t ⊂ Mt.

Similarly, the uniform distribution on Lt is given by U L
t
(
L0

t
)
=

L0
t

Lt
for all L0

t ⊂ Lt. Then,
{Et : t ∈N} is a discretizing sequence of economies if it satisfies:

1. Mt ⊂Mt+1 and Lt ⊂ Lt+1 for all t,

2. limt→∞ UM
t (Mt ∩ [al, ah]) = U ([al, ah]),

3. limt→∞ U L
t (Lt ∩ [al, ah]) = U ([al, ah]),

where U (•) denotes the uniform distribution with support over [0, 1] and [al, ah] ⊂ [0, 1].

Along the sequence {Et : t ∈N} as the economy becomes more discretized, I make addi-
tional assumptions on σ1 so that the model has a well-defined limit. The probability of meeting
potential suppliers increases, i.e., limt→∞ λt = ∞, but at a rate slower than that at which the
economy is discretized, i.e., limt→∞

λt
Mt

= 0. At the same time, match-specific productivities are
drawn from stochastically worse distributions as limt→∞ a0,t = 0. While the number of potential
suppliers grows arbitrarily large and the match-specific productivity associated with any single
supplier is drawn from a stochastically worse distribution, the limit is well behaved because the
probability of encountering a supplier with match-specific productivity greater than a does not

13Existence and uniqueness of the trade equilibrium in the limiting economy can be shown in a manner
analogous to Theorems 1-3 in Alvarez and Lucas (2007).
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change in the limiting economy, i.e., limt→∞ λta
ζ
0,t = 1.14 Furthermore, the economy becomes

discretized in a manner such that the proportion of firms and households at every location is
non-zero and finite. The following assumption states this formally.

Assumption 6. The discretizing sequence of economies {Et : t ∈N} satisfies the following conditions:15

1. {λt, a0,t : t ∈N} is such that λt = o (Mt) and λta
ζ
0,t = Θ(1)

2. {Md,t, Ld,t : d ∈ J , t ∈N} is such that Md,t = Θ (Mt) and Ld,t = Θ (Lt) for all d ∈ J

This completes the description of the probabilistic model. Let T ≡ {Td : d ∈ J }, θ ≡ {θd : d ∈}J ,
κ ≡ {κd : d ∈ J }, η ≡ {ηd : d ∈ J }, and α ≡ {αd : d ∈ J }. Through Assumptions 1 and 2, the
part of the aggregate state contained in σ0 in the limiting economy can then be redefined as
σ0 ≡ {T , θ, κ, η, τ}.

3.3 Aggregate Implications

I now proceed to characterize equilibrium prices $ ≡ {p (σ) , c (σ) , w (σ)} in the limiting
economy, i.e., limt→∞ Et. In the limiting economy, for any given realization of σ0, wages and
cross-sectional distributions of effective prices and marginal costs at all locations are invariant
across all realizations of σ1. Therefore, equilibrium prices in the limiting economy can be ex-
pressed as $ ≡ {p (σ0) , c (σ0) , w (σ0)}. I begin with distributional properties of effective prices
and marginal costs. Next, I provide model implications for firm-to-firm trade and trade between
locations which lead to the characterization of wages in the trade equilibrium.

Distributions of Effective Prices and Markups With limit pricing, the distribution of effective
prices faced by a firm for any of its tasks or that faced by a household for any of its needs is char-
acterized by the distribution of the offer with the second lowest effective cost to the supplier.
The following proposition provides the distribution of effective prices in the limiting economy.

Proposition 1. For any realization of σ0, the effective prices of materials used by firm b to accomplish
any task, pd(b, k), and that of goods consumed by household i to satisfy need n, pd(i, n), converge to the
following distribution as t→ ∞:

Fpd (p) =
(

1− e−Ad pζ − Ad pζe−Ad pζ
)

1 {p > 0} ,

14This kind of assumption was shown to have a well-defined limit by Kortum (1997) and put to use for a similar
purpose by Oberfield (2018).

15For any two functions f (n) and g(n), f (n) = o (g(n)) =⇒ limn→∞
f (n)
g(n) = 0 and f (n) = Θ(g(n) =⇒

lim supn→∞
| f (n)|
g(n) < ∞ and lim supn→∞ |

f (n)
g(n) |> 0.
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where A ≡ {Ad : d ∈ J } is the unique positive solution to the following fixed point problem:16

Ad = ∑
o∈J

τ
−ζ
od µoΓ

(
1− ζ

θo

)
T

ζ
θo

o w−ζ(1−αo)
o E{Ko}

[
Γ
(

2− αo

Ko

)Ko
]

Aαo
o , (3.8)

where µo denotes the proportion of firms at o and E{Ko} [·] denotes the expectation over all realizations of
numbers of tasks Ko across firms at o.

Proof. See Appendix B.1.

The distribution of effective prices conditional on σ0 is obtained by appealing to a law of
large numbers afforded by Definition 2. While the effective price faced by individual firms and
households varies across realizations of σ1, the cross-sectional distribution in the limit economy
does not. These distributions are parametrized by a scale parameter Ad and a shape parameter
ζ. Market access, given by Ad, is a key object of interest because it summarizes the probabilistic
access of firms at d to inputs from all locations. The functional form suggests that firms at a loca-
tion with higher market access face stochastically lower effective prices. Specifically, if Ad > Ad′ ,
the distribution Fpd′ (·) first-order stochastically dominates Fpd (·).

Focussing on equation (3.8), market access Ad is a trade friction (τ−ζ
od ) weighted sum of the at-

tractiveness of all locations o ∈ J , i.e., nearer locations receive higher weights because of lower
trade costs τod and vice versa. The attractiveness of a location o for sourcing inputs is deter-
mined by four factors: (a) density of firms µo; (b) average productivity among firms To; (c) its
own market access Ao; and (d) wages wo. Locations with higher density, higher average produc-
tivity, higher market access or lower wages are more attractive. In addition, the attractiveness of
a location o is more sensitive to its market access Ao and less so to wages wo if materials share of
costs αo is higher at o and vice versa.

Although the effective price is characterized by the distribution of the offer with the second
lowest effective cost to the supplier, it is still the supplier with the lowest effective cost that is
selected. The distribution of markups faced by the firm or the household is characterized by that
of the ratio of the second lowest to the lowest effective costs incurred by the second best and the
best suppliers respectively. In addition, Assumption 6 implies that in the limiting economy, ev-
ery firm or household encounters at least two potential suppliers with probability approaching
one and this ensures that markups are well-behaved.17 The following proposition provides the
distribution of markups.

Proposition 2. Markups over marginal cost of lowest cost supplier m̄od(·, ·, ·) are distributed according

16The gamma function Γ (·) is defined as Γ(x) =
∫ ∞

0 e−xmx−1dm.
17To see this clearly, note that for any firm b, P (|Sd(b)| < 2) =

(
1− λt

Mt

)Mt
+ (Mt

1 )
(

λt
Mt

) (
1− λt

Mt

)Mt−1
. It then

follows that limt→∞ P (|Sd(b)| < 2) = 0.
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to the following Pareto distribution:

Fm̄(m̄) =
(

1− m̄−ζ
)

1 {m̄ > 1} .

Proof. See Appendix B.2.

The shape parameter of the distribution of potential markups is ζ, the same parameter that
governs dispersion in match-specific productivities. With lower ζ, higher markups are more
likely since high match-specific productivities are more likely and hence are larger gaps between
costs to the best and second best suppliers. Moreover, the distribution of markups is the same in
any destination. An aggregate implication that follows from the distribution of markups is that
the share of variable costs in gross output is given by 1

1+1/ζ
at all locations. This in turn implies

that value-added share of gross output at location o is given by:18

(VA/GO)o =
1− αo + 1/ζ

1 + 1/ζ
. (3.9)

Distributions of Marginal Costs The marginal cost of a firm determines (albeit, partially)
whether it is selected by potential customers and if so, the intensity with which it is used. It
is therefore a key variable governing network formation between firms. The marginal cost of
the firm is itself determined by its own productivity, wage faced by it for hiring labor, and the
effective price faced by it for its tasks. Since productivity, number of tasks and effective price
faced for each task are randomly drawn for each firm, the marginal cost of any given firm is
a random variable that is itself the product of a random number (number of tasks) of random
variables (effective price for each task). In lieu of the distribution function which does not have a
closed-form characterization, I provide closed-form expressions for moments of marginal costs
distribution in the following proposition.

Proposition 3. For any realization of σ0, the distribution of marginal costs at any location o satisfies the
following moment conditions:

E [log co(s)] =
αoψ(0)(2)

ζ
+

ψ(0)(1)
θo

+ (1− αo) log wo −
αo

ζ
log Ao −

1
θo

log To, (3.10)

E [co(s)] = Γ
(

1 +
1
θo

)
T
− 1

θo
o w1−αo

o E{Ko}

[
Γ
(

2 +
αo

ζKo

)Ko
]

A
− αo

ζ
o , (3.11)

Var [log co(s)] =
ψ(1)(1)

θ2
o

+ E{Ko} [1/Ko]
α2

oψ(1)(2)
ζ2 , (3.12)

18This result is similar to that obtained in Bernard et al. (2003). In their case, markups were distributed according
to a Pareto distribution with shape parameter inherited from the productivity distribution. In contrast, here the
markup distribution inherits the shape parameter from the distribution of match-specific productivities, not the
distribution of productivities.
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CV [co(s)]
2 =

Γ
(

1 + 2
θo

)
Γ
(

1 + 1
θo

)2 ·
E{Ko}

[
Γ
(

2 + 2αo
ζKo

)Ko
]

E{Ko}

[
Γ
(

2 + αo
ζKo

)Ko
]2 − 1, (3.13)

where ψ(n)(·) denotes polygamma functions and CV denotes the coefficient of variation.19

Proof. See Appendix B.3.

What factors affect average marginal costs of firms at a location? Intuitively, firms’ marginal
costs will be low on average if they are more productive, are able to source intermediate inputs at
lower prices, and face lower cost of hiring labor. Equations (3.10) and (3.11) suggest that average
marginal costs are lower at locations where firms (a) have higher average productivity (higher
To); (b) face stochastically lower effective prices for their tasks thanks to better market access
(higher Ao); and (c) face lower costs of hiring labor (lower wo). Further, average marginal costs
are more sensitive to market access and less so to wages if materials share of costs αo is higher
and vice versa. Of these factors that influence average marginal costs, {T , α} are exogenous
location characteristics whereas {A, w} constitute endogenous price variables.

What factors affect dispersion of marginal costs in equilibrium at a location? Marginal costs
of firms differ from one another due to differences in productivity and due to differences in ef-
fective prices faced for their respective tasks. Equations (3.12) and (3.13) shed light on the role of
these two channels. The first term of the sum in equation (3.12) and of the product in equation
(3.13) reveal the contribution of differences in productivities across firms. Locations where dis-
persion in productivities is higher (lower θo) will have a higher dispersion in marginal costs.20

More importantly, the second term of the sum in equation (3.12) and of the product in (3.13)
reveal the contribution of differences in effective prices faced by firms. Focussing on equation
(3.12), its contribution is governed by three factors. First and foremost, the contribution is de-
creasing in ζ. A lower ζ increases the likelihood of high draws of match-specific productivities
and therefore generates higher dispersion in effective prices. This factor is common across all
locations. Second, the contribution is higher at locations with higher materials share of costs
(higher αo). Naturally, if materials form a larger share of costs, dispersion in price of materials
plays a larger role. Finally, the contribution is lower at locations with higher numbers of tasks
(lower E [1/Ko] or higher κo). With higher numbers of tasks, for one firm’s price of materials to
be substantially higher than another, it requires a larger number of high draws of match-specific
productivities. Since such an occurrence is unlikely, locations with higher κo have lower disper-
sion in materials prices across firms. A similar explanation also holds for equation (3.13).

19Polygamma functions ψ(n)(·) are defined as ψ(n)(x) = dn+1 ln Γ(x)
dxn+1 .

20In equation (3.12) the first term is clearly decreasing in θo. The first term in equation (3.13) is also decreasing
in θo. For example, consider two locations o and o′ with Fréchet shape parameters of productivity distributions
given by θo = 5 and θo′ = 6 respectively. The first term in equation (3.13) takes values 1.052 and 1.037 at o and o′

respectively.
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Conditional Choice Probabilities & Firm-to-Firm Trade I turn to predictions for firm-to-firm
trade. Since these are not aggregate implications but rather are at the firm-to-firm level, it is
not meaningful to consider the limiting economy. Therefore, I consider a sufficiently large
economy along the sequence in Definition 2 such that Assumption 6 holds, i.e., λ/M � 1,
|λaζ

0 − 1| < ε1, and |a0| < ε2 for arbitrarily small values of ε1 and ε2. Recall from equation
(3.1) that firms choose suppliers for tasks based on suppliers’ marginal costs, trade costs faced
by them, and match-specific productivities associated with the task under consideration. While
trade costs τ constitute σ0, match-specific productivities are unknown and suppliers’ marginal
costs co(s) are determined endogenously. I therefore characterize conditional choice probabili-
ties for supplier choice, i.e., probabilities for choice of supplier conditional on its marginal cost
but in expectation over match-specific productivities that are yet to be realized. Let π0

od(s, b)
denote the probability with which firm b selects firm s for any one of its tasks. Prior to re-
alizing the match-specific productivities for each task {aod (s, b, k)}k∈Kd(b)

, the probability of
firm s getting selected for any one of the tasks by firm b is common across all tasks. That is,
π0

od (s, b) = π0
od(s, b, k) = E{a}

[
1
{

s = s∗d(b, k) | a
}]

where the expectation operator is over all re-
alizations of aod (s, b, k). The following proposition provides expressions for conditional choice
probabilities π0

od (s, b) as well as for ρ0
od(s, b), the probability with which firm b selects firm s for

at least one of its tasks – thereby determining the extensive margin of firm-to-firm trade. As it
turns out, these probabilities are independent of the identity of the buyer at the destination and
therefore can be written as π0

od(s,−) and ρ0
od(s,−).

Proposition 4. For any realization of σ0, conditional on firm s’s marginal cost being co(s), the probability
with which any firm located in d selects firm s located in o for any given task is

π0
od(s,−) =

co(s)−ζτ
−ζ
od

∑s′∈M co′(s′)−ζτ
−ζ
o′d

. (3.14)

Further, conditional on firm s’s marginal cost being co(s), the probability with which any firm located in
d selects firm s located in o for at least one of its tasks is

ρ0
od(s,−) = 1− e−κdπ0

od(s,−)

1− e−κd
. (3.15)

Proof. See Appendix B.4.

The above proposition is key to understanding what drives network formation among firms
in the model and how it enables the model to match empirical regularities described in Section
2. On one hand, equation (3.14) highlights the factors that influence the likelihood of a supplier s
from o getting selected by a buyer at d for any one of its tasks. Firms with lower marginal costs,
denoted by co(s), are more likely to get selected for more tasks. Firms that are located nearer to
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the buyers and face lower trade costs, denoted by τod, are more likely to get selected for more
tasks. Moreover, the elasticity of the likelihood of getting selected with respect to marginal costs

or trade costs is decreasing in ζ. That is, ∂ ln π0
od(s,−)

∂ ln co(s)
=

∂ ln π0
od(s,−)

∂ ln τod
= −ζ. With lower ζ, Assump-

tion 4 implies that high match-specific productivities are more likely and the choice of supplier
is less sensitive to other factors, i.e., its marginal cost and the trade cost faced by it. On the other
hand, equation (3.15) shows that the same factors also influence whether a supplier s from o gets
selected by a buyer at d for at least one of its tasks or none at all, i.e., the extensive margin of
firm-to-firm trade. Since ρ0

od(s,−) is increasing in π0
od(s,−), marginal costs co(s), trade costs τod

and dispersion in match-productivities governed by ζ affect the extensive margin of supplier
choice in the same manner as above. In addition to these factors, equation (3.15) also suggests
that firms are more likely to find customers at destinations where buyers have higher numbers of
tasks (higher κd). Naturally, if buyers have larger numbers of tasks, the supplier draws a larger
number of match-specific productivities, has a better chance of getting high draws and hence
get selected by a buyer.

In summary, this proposition channels the role of the upstream margin — at any location d,
firms with lower marginal costs are likely to find more customers and are also likely to be used
intensively by them. The role of geography in the upstream margin comes from the dependence
of these probabilities on trade costs — firms from o are less likely to be successful both at the ex-
tensive and intensive margins of firm-to-firm trade across potential customers at d if o is farther,
i.e., τod is higher. These results then lead to predictions for trade between locations. Since those
are aggregate predictions, they are derived for the limiting economy.

Sourcing Probabilities & Trade between Locations Conditional choice probabilities of sup-
plier choice naturally aggregate to sourcing probabilities. That is, the probability with which
any buyer sources inputs from o for any one its tasks can be obtained as the sum of condi-
tional choice probabilities associated with all the suppliers located at o. The limiting economy
assumption comes in handy here as it allows aggregation across firms within a location. Con-
ditional choice probabilities from Proposition 4 together with properties of the cross-sectional
distributions of effective prices and marginal costs from Propositions 1 and 3 lead to the next
proposition. This proposition characterizes sourcing probabilities across origins by firm b, de-
noted by π0

od (•, b), as well as ρ0
od(•, b), the probability with which firm b sources from o for at

least one of its tasks. As in the previous proposition, these probabilities are independent of the
identity of the buyer at the destination and therefore can be written as π0

od(•,−) and ρ0
od(•,−).

Proposition 5. For any realization of σ0, the probability with which any firm located in d selects a sup-
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plier from o for any given task is

π0
od(•,−) =

µoΓ
(

1− ζ
θo

)
T

ζ
θo

o w−ζ(1−αo)
o E{Ko}

[
Γ
(

2− αo
Ko

)Ko
]

Aαo
o τ
−ζ
od

Ad
. (3.16)

Further, the probability with which any firm located in d selects a supplier from o for at least one of its
tasks is

ρ0
od(•,−) =

1− e−κdπ0
od(•,−)

1− e−κd
. (3.17)

Proof. See Appendix B.5.

Sourcing probabilities in equation (3.16) hark back to market access defined in equation (3.8).
Recall that market access is a weighted sum of attractiveness of all locations for a particular
destination. Equation (3.16) suggests the probability with which a buyer from d sources inter-
mediate inputs from o for any one of its tasks is given by the contribution of location o towards
market access of firms at d. Firms at d are more likely to source inputs from o if there are a larger
number of firms at o (higher µo), firms at o have higher productivities on average (higher To),
wage wo is lower, or firms at o have better market access (higher Ao). Other factors Γ

(
1− ζ

θo

)
and E{Ko}

[
Γ
(

2− αo
Ko

)Ko
]

capture that fact that when materials share αo is higher or dispersion

parameter θo is lower supply chains routed through firms at o are likely to be more efficient.
The same factors also affect the likelihood of a buyer at d sourcing from o for at least one of its
tasks or none at all. Since ρ0

od(•,−) is increasing in π0
od(•,−), a similar explanation holds for

origin selection at the extensive margin. In addition to these factors, equation (3.17) also sug-
gests that firms at d are more likely to source from o if they have higher numbers of tasks (higher
κd). The explanation for this parallels that of how equation (3.15) affects the extensive margin of
firm-to-firm trade.

Trade Equilibrium Equation (3.16) suggests that the probability of sourcing from a particular
origin o is common for all tasks across all firms at a destination d and that the choice is condi-
tionally independent across firms at the destination. Therefore, the law of large numbers implies
that in the limiting economy aggregate trade shares converge to the sourcing probabilities, i.e.,
limt→∞ π0

od (Et) = π0
od(•,−).

21 This brings us to the proposition below which states that the
trade equilibrium in the limiting economy is satisfied with trade shares given by π0

od(•,−) for
all networks that are realized for any given σ0.

21Under the additional assumption that θo = θ, αo = α, and κd = κ at all locations o, the sourcing probabilities
in equation (3.16) can be simplified as follows.

πod =

µo

(
Tow−θ(1−α)

o A
α· θζ
o τ−θ

od

) ζ
θ

Ad
, (3.18)
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Proposition 6. For any realization of σ0, w ≡ {wd : d ∈ J } solves the following system of equations
for all realizations of σ1:

woLo

1− αo
= ∑

d∈J
π0

od (•,−)
wdLd

1− αd
(3.19)

Proof. See Appendix B.6.

This concludes the characterization of equilibrium prices and brings us to the definition of
the trade equilibrium below.

Definition 3. For any given σ0, the trade equilibrium in the limiting economy is defined as the
vector of wages w such that (a) market access at each location satisfies equation (3.8); (b) trade
shares coincide with sourcing probabilities in equation (3.16) and (c) the market clearing condi-
tion in equation (3.19) holds.

The trade equilibrium along with tractable expressions for firm-to-firm trade and aggregate
trade in Propositions 4 and 5 give rise to transparent estimating equations for the model, to
which I turn next.

where Ad = ∑o

(
µoTow−ζ(1−α)

o Aα
o

)
τ
−ζ
od denotes the market access at location d. This bears resemblance to

aggregate trade shares between locations obtained in Eaton and Kortum (2002) and Bernard et al. (2003). In their
case, aggregate trade share is given by

πod =
Tow−θ(1−α)

o Aα
o τ−θ

od
Ad

,

where Ad = ∑o

(
Tow−θ(1−α)

o Aα
o

)
τ−θ

od denotes the market access at location d, α denotes the materials
share of costs while To and θ are parameters of the Fréchet productivity distribution at location o given by
P (zo(s) ≤ z) = e−Toz−θ

1 {z ≥ 0}.
The sourcing probabilities also bear resemblance to aggregate trade shares between locations obtained in Melitz

(2003) and Chaney (2008). In their case, aggregate trade share is given by

πod =
µo

(
Tow−θ(1−α)

o Aα
o τ−θ

od

)
f
−( θ

σ−1−1)
od

Ad
,

where Ad = ∑o

(
µoTow−θ(1−α)

o Aα
o

)
τ−θ

od f
−( θ

σ−1−1)
od denotes the market access at location d, fod denotes fixed

costs of exporting from location o to location d, σ denotes the elasticity of substitution across differenti-
ated goods while To and θ are parameters of the Pareto productivity distribution at location o given by
P (zo(s) ≤ z) =

(
1− Toz−θ

)
1
{

z ≥ T1/θ
o

}
.

In this context, two facts are worth noting about Equation (3.18): (a) the elasticity of trade shares with respect
to trade costs comes from the shape parameter of match-specific productivities ζ and not the dispersion of
productivities θ, and (b) trade shares are increasing in the density of firms at the origin µo. The former unlinks the
dispersion in idiosyncratic productivities from the trade elasticity while the latter introduces a probabilistic notion
of “love of variety” within the Ricardian framework.
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4 Empirical Framework

This section lays out the procedure for estimation of the model and counterfactual analysis.
The objective of estimation is to infer the aggregate state σ0 that consists of trade costs, firms’ id-
iosyncratic productivities, and firms’ task intensities given the observed data. Estimation relies
on Proposition 4. With the estimated model, counterfactual analysis for large economies is then
conducted by relying on Proposition 6 to evaluate the change in aggregate outcomes that results
in response to shocks deriving from a change in the aggregate state σ0 to σ′0. For clarity, state
variables ∆, parameters Θ, and data D are grouped as follows:

∆ ≡
{{

co(s)−ζ : s ∈ M
}

,
{

τ
−ζ
od : (o, d) ∈ J ×J

}}
Θ ≡ {ζ, α, θ, κ}
D ≡ {{πod(s, b) : (s, b) ∈ Mo ×Md} , Xod : (o, d) ∈ J ×J }

where πod(s, b) denotes the share of firm s in firm b’s material costs and Xod denotes the vector of
bilateral origin-destination observables such as distance and borders etc. In what follows, terms
with superscript (·)0 denote true values and those with superscript (·)∗ denote corresponding
estimates. Changes in quantities are denoted by (̂·).22 For example, π0

od(s, b) denotes true values
of conditional choice probabilities, π∗od(s, b) denotes estimates of conditional choice probabilities

, and ̂π0
od(s, b) denotes changes in conditional choice probabilities from the initial to the counter-

factual state.

4.1 Estimation of Marginal Costs and Trade Frictions, ∆

I reformulate the economic model developed in the previous section as a multinomial logit
model of supplier choice for tasks of each of the firms and estimate it semi-parametrically. Firm’s
marginal costs are estimated as firm fixed effects and bilateral origin-destination fixed effects
correspond to a structural gravity specification for estimating trade frictions. Trade frictions are
then estimated by projecting bilateral fixed effects on observables. Together, these provide esti-
mates of conditional choice probabilities for firm-to-firm trade as well as sourcing probabilities
for trade between locations.

Marginal Costs & Structural Gravity The econometric model can be motivated using the balls
and bins problem. Consider the multinomial random variable characterized by a firm b located
at d throwing Kd(b) balls (one for each of its tasks) into M bins. Each of these bins corresponds
to a potential supplier, denoted by s. The probability with which any of these balls falls into the

22For any variable x that changes it value to x′ in a counterfactual state, change in x is denoted as x̂ = x′/x.
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bin indexed s is given by the expression for π0
od(s,−) from Proposition 4. A realization of this

random variable consists of the proportion of balls that landed in each of the bins. Since tasks are
symmetric and the production function of firm b takes the Cobb-Douglas functional form (As-
sumption 5), the model counterpart of this realization is the vector of cost shares of firm b across
all suppliers in the economy. In other words, the cost share of firm b that can be attributed to firm
s stands in for the relative frequency of firm s’s successes in getting selected across firm b’s tasks.
Since there are a discrete number of tasks, π0

od(s, b) is only the expected share of tasks for which
firm b uses the output of firm s. Any given realization may deviate from this expected value for
particularly high or low realizations of match-specific productivities and from randomness in
buyer-seller encounters between firms.23 Therefore, making use of Proposition 4, the estimating
equation can be expressed as a multinomial logit function:24

E [πod(s, b)] =
co(s)−ζτ

−ζ
od

∑s′∈M co′(s′)−ζτ
−ζ
o′d

(4.1)

This multinomial logit specification is non-standard because of two reasons. On one hand,
firms’ marginal costs (included as firm fixed effects) are endogenously determined in the model
through supplier choice decisions of all the firms in the economy. Since match-specific produc-
tivities are independent across firms and tasks in their production function, the supplier choice
decision is however conditionally independent. Therefore, firm fixed effects estimated using this
specification can be treated as the conditional distribution of marginal costs without resorting
to full solution methods to estimate the model. This is analogous to the estimation of condi-
tional choice probabilities in dynamic discrete choice models following Hotz and Miller (1993)

23One could draw an analogy by reinterpreting the Eaton and Kortum (2002) model of trade between countries
as the representative agent in the destination country throwing infinitely many balls (one for each commodity
arranged on a continuum) into a finite number of bins (one for each origin country). Since the bins are finite in num-
ber while balls are infinitely many, sourcing probabilities coincide with aggregate trade shares deterministically.
In contrast, the model here is of trade between firms where the customer firm throws a finite number of balls (one
for each task) into potentially infinitely many bins (one for every firm in the economy). Since the bins are infinitely
many in number while balls are finite in number, neither conditional choice probabilities determine firm-to-firm
trade shares deterministically nor do sourcing probabilities determine aggregate trade shares deterministically.

24In related work, Eaton et al. (2013) also specify a multinomial likelihood function for international trade
between countries derived from a different economic model and conduct estimation using pseudo-maximum
likelihood estimation à la Gourieroux et al. (1984). The dimensionality of their estimation program is determined
by the number of countries which is a much smaller number compared to the specification here where the
dimensionality is determined by the number of firms that runs into millions.
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and its application to network formation with many agents in Menzel (2015).25 On the other
hand, since there are a large number of firms in the economy, estimation of the multinomial
logit model would typically require high-dimensional non-linear optimization over a very large
number of parameters to solve for the estimates. This can be computationally infeasible using
standard Newton methods when the number of fixed effects runs into millions. However, this
issue can be avoided by appealing to several special features of the multinomial likelihood func-
tion. First, estimates can be obtained using the Poisson likelihood function with additional fixed
effects (see Baker (1994); Taddy (2015)). Second, Poisson likelihood estimation automatically sat-
isfies adding up constraints implied by the model (see Fally (2015)). Third, Poisson likelihood
specification allows solving for fixed effects in closed-form (for example, see Hausman et al.
(1984)). Finally, subsequent estimation of trade frictions using bilateral fixed effects does not
suffer from the incidental parameters problem (for details, see Neyman and Scott (1948)) and
hence can be conducted through the conditional maximum likelihood approach (see Andersen
(1970)). Formally, the estimation problem is as follows:

∆∗ = arg max
∆

1
M ∑

b∈M
ln fMNL (D | ∆) , (4.2)

fMNL (D | ∆) ∝ ∏
s∈M

(
co(s)−ζτ

−ζ
od

∑s′∈M co′(s′)−ζτ
−ζ
o′d

)πod(s,b)

The above specification with fixed effects however presents a problem of perfect multicollinear-
ity in regressors. Note that dummy variables associated with

{
co(s)−ζ : s ∈ Mo

}
and

{
τ
−ζ
od : d ∈ J

}
are collinear for all such locations o. Hence, I make the following normalizations so that these
fixed effects are identified up to scale.

Assumption 7. For all s ∈ Mo, o ∈ J , let co(s) = co c̃o(s) such that
(
∑s∈Mo c̃o(s)−ζ

)−1/ζ
= 1.

The above assumption normalizes the power average
(
∑s∈Mo c̃o(s)−ζ

)−1/ζ of firms’ marginal
costs relative to their location average to unity. It separates within and between location hetero-
geneity in firms’ marginal costs. The within location component is captured by differences in
c̃o(s) while the between location component is captured by differences in co across locations.26

25To see this clearly, note that marginal costs of any firm b admits the following recursive representation.

cd(b)︸ ︷︷ ︸
value function

=
w1−αd

d
zd(b)

×
Kd(b)

∏
k=1

min
s∈Sd(b)

 m̄od(s, b, k)τod
aod(s, b, k)

× co(s)︸︷︷︸
upstream value function



discount factor︷ ︸︸ ︷
αd

Kd(b)

In this context, conditional choice probabilities from Proposition 4 are therefore the probabilities with which any
given supplier s is chosen for any one of the buyer b’s tasks.

26The between location component captures both differences in average marginal cost between locations and
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Under this assumption, the first order conditions implied by the likelihood maximization prob-
lem in equation (4.2) can be solved to obtain closed-form estimators for fixed effects as described
in the proposition below.

Proposition 7. Under Assumption 7, estimates from equation (4.2) are given by:

(
c̃o(s)−ζ

)∗
=

∑d πod(s, •)
∑s′∈Mo ∑d πod(s′, •)

∀s ∈ Mo, o ∈ J , (4.3)(
c−ζ

o τ
−ζ
od

∑o′ c
−ζ
o′ τ

−ζ
o′d

)∗
=

1
Md

∑
b∈Md

πod (•, b) ∀(o, d) ∈ J × J (4.4)

where πod (s, •) ≡ ∑b∈Md
πod (s, b) and πod (•, b) ≡ ∑s∈Mo πod (s, b).

Proof. See Appendix C.1.

The estimators for firm fixed effects in equation (4.3) neatly bridge theoretical predictions on
firm-to-firm trade in equation (3.14) and empirical regularities arising from the decomposition in
equation (2.1). The decomposition in equation (2.1) suggested that larger firms also tend to have
higher intensity of use. Conditional choice probabilities in equation (3.14) predict that firms with
low marginal costs are likely to have higher intensity of use. Equation (4.3) shows that firms’
intensity of use is a sufficient statistic for its marginal costs, albeit scaled with an elasticity ζ. In
addition, the theoretical expression for bilateral origin-destination fixed effects in equation (4.4)
corresponds to a structural gravity specification. For any pair of locations (o, d), the estimator
for this specification is the simple average of the cost share across firms at d that can be attributed
to purchase of goods from firms in o. This is the empirical counterpart of sourcing probabilities
in equation (3.16).

Trade Frictions, Conditional Choice Probabilities, and Sourcing Probabilities With firm fixed
effects out of the way, thanks to equation (4.3), trade frictions can now be estimated by project-
ing bilateral origin-destination fixed effects (from equation (4.4)) on bilateral observables such
as distance, borders etc., similar to gravity regressions, with the following estimating equation:

E

[(
c−ζ

o τ
−ζ
od

∑o′ c
−ζ
o′ τ

−ζ
o′d

)∗]
=

exp
(

ln
(

c−ζ
o

)
+ X ′odβ

)
∑o′ exp

(
ln
(

c−ζ
o′

)
+ X ′o′dβ

) . (4.5)

This delivers estimates of origin fixed effects
(

c−ζ
o

)∗
and trade frictions

(
τ
−ζ
od

)∗
= exp (X ′odβ∗).

The manner in which trade frictions are estimated here differs from the standard approach of

also differences arising from having a higher number of firms at one location than another. To see this clearly, note
that if marginal costs are identical across firms at location o, i.e., co(s) = c̄o . Then, co = M−1/ζ

o c̄o, which depends on
both the number of firms and the average marginal cost.

31



projecting aggregate trade flows on distance and border dummies (for example, see Agnosteva
et al. (2019)). The dependent variable implied by the model is not aggregate trade flows (for ex-
ample, Santos Silva and Tenreyro (2006)) or aggregate trade shares (as in Eaton et al. (2013)) but
average trade share across buyers at the destination. More specifically, the dependent variable

1
Md

∑b∈Md
πod (•, b) is an unweighted average of the sourcing share from o across all buyers at a

destination. While this is not comparable to aggregate trade flows, it closely related to aggregate
trade shares. In contrast to average trade shares which is a simple average of sourcing shares
across firms, the aggregate trade share is a weighted average of individual sourcing probabilities
where each individual buyer is weighted by its size.27 To the extent that size of buyers is corre-
lated with their sourcing probabilities from an origin, aggregate trade shares bias the estimates
of the trade frictions faced by individual firms for the purposes of estimation here.

Fitted shares from the gravity regressions are the estimates of sourcing probabilities. Esti-
mates of conditional choice probabilities are then obtained from firm fixed effects and estimates
of sourcing probabilities. Formally, the estimates of conditional choice probabilities and sourcing
probabilities are respectively given by

π∗od(s,−) =
(

c̃o(s)−ζ
)∗
· π∗od(•,−), (4.6)

π∗od(•,−) =

(
c−ζ

o

)∗ (
τ
−ζ
od

)∗
∑o′∈J

(
c−ζ

o′

)∗ (
τ
−ζ
o′d

)∗ . (4.7)

4.2 Estimation of Structural Elasticities, Θ

Trade Elasticity ζ Since the model satisfies structural gravity at the aggregate level (see Equa-
tion (3.16)) and the dispersion of match-specific productivities ζ coincides with the elasticity of
trade with respect to trade costs, I calibrate the value of this parameter to 5 from median of the
estimates of price elasticity in structural gravity equations (see Head and Mayer (2014)).

Materials Share α The distribution of markups from Proposition 2 provides expressions for
value-added share of gross output (VA/GO)o. Using equation (3.9), materials share αo is cali-
brated as αo = (1 + 1/ζ) (1− (VA/GO)o) , where (VA/GO)o across districts are constructed using
aggregate production statistics as described in Appendix C.2.

27To see this clearly, note that measured aggregate trade share can be expressed as

πod =
∑b∈Md

purchasesd(b)× πod (•, b)

∑b′∈Md
purchasesd(b′)

.

=
1

Md
∑

b∈Md

πod (•, b) +
Cov (πod(•, b), purchasesd(b))

1
Md

∑b′∈Md
purchasesd(b′)
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Task Intensities κ Estimation of task intensities κ relies on equation (3.15). The expression for
ρ0

od (s,−) shows how κd regulates the number of customers a firm s finds at location d given its
conditional choice probabilities π0

od(s,−). Since both ρ0
od (s,−) and π0

od(s,−) are independent
of the identity of buyer at d, the empirical counterpart of ρ0

od(s,−) is the fraction of firms at d
that buy goods from s. The theoretical value of ρ0

od(s,−) in terms of κd is computed using esti-
mated conditional choice probabilities π∗od(s,−). Estimates of task intensities κ are obtained by
minimizing the distance between theoretical and empirical values of ρ0

od(s,−).

Productivity Dispersion θ The squared coefficient of variation of marginal costs from equation
(3.13) can be extended to derive the same for the squared coefficient of variation of co(s)−ζ which
are estimated as firm fixed effects in equation (4.2). In particular, the theoretical expression for
the squared coefficient of variation of co(s)−ζ is given by:

CVo

(
co(s)−

ζ/2
)2

=
Γ
(

1− ζ
θo

)
Γ
(

1− ζ
2θo

)2 ·
E{Ko}

[
Γ
(

2− αo
Ko

)Ko
]

E{Ko}

[
Γ
(

2− αo
2Ko

)Ko
]2 − 1

For any value of θ, the theoretical value is evaluated using estimates of task intensities κ

and materials shares α, as per the above expression. For each district, the empirical value of
the squared coefficient of variation is obtained using the estimator proposed in Breunig (2001)
from estimates

{(
co(s)−ζ

)∗ : s ∈ M
}

. Estimates of θ are obtained by minimizing the distance
between the theoretical and the empirical values of squared coefficient of variation.

4.3 Counterfactual Analysis

For counterfactual analysis, I consider the limiting economy as described in Definition 2. To
operationalize Proposition 6 for counterfactual analysis, it is useful to express the trade equilib-
rium in changes. The following definition states that and motivates the algorithm for evaluating
counterfactual outcomes in response to shocks that derive from a change in the aggregate state
σ0 to σ′0.

Definition 4. For any change in aggregate state σ0 to σ′0, equilibrium change in wages ŵ ≡
{ŵd : d ∈ J } and welfare V̂ ≡

{
V̂d : d ∈ J

}
are characterized the following system of equa-

tions for all realizations of σ1 or σ′1:28

Âd = ∑
o

π0
od (•,−) δ̂odŵ−ζ(1−αo)

o Âαo
o

28The expression for welfare changes is derived in Appendix C.3.
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̂π0
od (•,−) =

δ̂odŵ−ζ(1−αo)
o Âαo

o

Âd
ŵowoLo

1− αo
= ∑

d

̂π0
od (•,−)π

0
od (•,−)

ŵdwdLd
1− αd

V̂d = ŵd Â1/ζ

d

where δ̂ ≡
{

δ̂od : (o, d) ∈ J ×J
}

is function of shocks that capture the resultant effect of change
from σ0 to σ′0.

With this definition of the equilibrium in changes in the limiting economy, the procedure for
computing counterfactual outcomes consists of three steps. First, I evaluate the expected value of
aggregate and firm-level outcomes such as intensity of use and sales in the initial state. Second,
I evaluate changes in aggregate outcomes when going from the initial state to the counterfactual
state. This is done using a tâtonnement algorithm similar to Alvarez and Lucas (2007) and Dekle
et al. (2008). Finally, I evaluate the expected value of aggregate and firm-level outcomes in the
counterfactual state. Details of the procedure are stated in Appendix C.4.

5 Estimation Results

This section first goes over estimates of trade frictions and conditional choice probabilities,
and then model predictions for firms’ sales and intensity of use.29 Then, I evaluate the model by
seeing how well it replicates empirical regularities documented in Section 2.

Estimates Trade frictions are estimated using gravity regressions. Table 5.1 reports estimated
coefficients for distance and border dummies in column (4) and compares them to common
methods in the trade literature in columns (1)-(3). Column (1) is an atheoretical regression spec-
ification that is not appealing when there are zeros in trade data and hence not comparable to
other columns. Column (2) is still an atheoretical specification but is consistent with handling ze-
ros in the data. Column (3) is a model-based specification and accommodates zeros in the data.
Column (4) is the specification that is implied by the model here. Comparing (2) or (3) to (4)
shows that using aggregate trade flows or shares underestimates trade frictions for estimation
of the model here. With estimated trade frictions in hand, estimates of sourcing probabilities,
denoted by π∗od(•,−), and firms’ conditional choice probabilities across destinations, denoted
by π∗od(s,−), are obtained using equations (4.7) and (4.6). I solve for wages that satisfy the trade
equilibrium in the limiting economy using equation (3.19) with the estimated sourcing probabil-
ities. The expected value of firms’ destination-specific intensity of use and sales are respectively
calculated, using wages and estimated conditional choice probabilities, as:

29Estimates of elasticities contained in Θ are relegated to Appendix D.
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Table 5.1: Gravity Regressions

sinh−1(salesod) PPML(salesod) MPML
(

salesod
∑o′ saleso′d

)
MPML

(
c−ζ

o τ
−ζ
od

∑o′ c−ζ

o′ τ
−ζ

o′d

)∗
(1) (2) (3) (4)

log(distance) -2.947∗∗∗ -0.219∗∗∗ -0.712∗∗∗ -0.990∗∗∗

(0.039) (0.042) (0.045) (0.044)
1{inter-state} -5.032∗∗∗ -1.971∗∗∗ -2.125∗∗∗ -2.579∗∗∗

(0.069) (0.104) (0.090) (0.089)
1{inter-district} 0.086 -1.484∗∗∗ -1.852∗∗∗ -2.262∗∗∗

(0.215) (0.117) (0.078) (0.067)
1{neighbor} -1.121∗∗∗ 0.562∗∗∗ 0.251∗∗∗ 0.516∗∗∗

(0.113) (0.053) (0.052) (0.047)

Fixed Effects:
Origin × Year X X X X
Destination × Year X X X X

Adjusted R2 0.669 — — —
Pseudo R2 — 0.945 0.435 0.488
Squared Correlation 0.674 0.953 0.793 0.898
# observations 1412 × 5 1412 × 5 1412 × 5 1412 × 5

Note. Standard errors in parentheses, two-way clustered by origin–year and destination–year. ∗p < 0.05, ∗∗p <
0.01, ∗∗∗p < 0.001. Observations pertain to all bilateral pairs between 141 districts for 5 years. The distance between
district pairs is calculated as the distance between their centroids. A district’s distance to itself is calculated as the
radius of the circle with the same area as the district. Column (1) is estimated using an OLS specification with
the inverse hyperbolic sine of trade flows as dependent variable. Column (2) is estimated using a Poisson PML
specification with aggregate trade flows as the dependent variable as in Santos Silva and Tenreyro (2006). Column
(3) is estimated using a multinomial PML specification with aggregate trade shares as the dependent variable as in
Eaton et al. (2013). Column (4) is estimated using a multinomial PML specification from equation (4.5). Two-way
clustering is done as in Cameron et al. (2011). Pseudo R2 is calculated as in McFadden (1974).

intensity of useod(s) = π∗od(s,−)Md, (5.1)

input salesod(s) = π∗od(s,−)
(

αd
1− αd + 1/ζ

)
wdLd. (5.2)

Intensity of use and sales of any given firm are then computed by summing over the above
values across all destinations. For aggregate trade flows between an origin-destination pair,
corresponding values are obtained by summing over all firms at the origin.

Model Fit A key finding in Proposition 7 is that the fixed effect estimate for a firm s with the
multinomial likelihood specification is in fact its measured intensity of use, ∑d πod(s, •).30 Ac-

30Fixed effect for firm s is the product of the within location component c̃o(s)−ζ and the between location
component c−ζ

o . Equation (4.3) provides a estimator for the former. The latter is estimated in column (4) in
Table 5.1 using a multinomial likelihood specification. By properties of the multinomial likelihood, this estimate
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Table 5.2: Goodness of Fit: Firms’ Intensity of Use and Sales

Intensity of Use Overall

π∗od(•,−) πod(•,−) π∗od(•,−) πod(•,−)
(1) (2) (3) (4)

Sales 0.996 1.000 0.428 0.467
Destination-Specific Sales 0.324 0.381 0.176 0.186
Trade Flows 0.512 0.999 0.503 0.709

Note. This table reports R2 of log-log regressions when predicted values for intensity of use and sales are projected
on observed data at three levels of aggregation: firms’ destination-specific sales, firms’ sales, and aggregate trade
flows. Columns (1) and (3) use estimated average trade shares from equation (4.7) while (2) and (4) use exact
average trade share from equation (4.4) for the calculations.

cording to the model (in equation (3.14)), this fixed effect is related marginal costs as co(s)−ζ .
This directly features in equation (4.6) and plays a vital role in enabling the model to reproduce
the empirical regularities. Apart from this, goodness of fit is governed by four factors. First, im-
perfect correlation between data and fitted values in Table 5.1, Column (4) causes differences in
πod(•,−) and π∗od(•,−). Second, estimating equation (4.1) is parsimoniously specified as it does
not allow heterogeneity in trade frictions faced by firms. While the data is at the firm-to-firm
level, fixed effects are only at the firm and origin–destination level. Third, equilibrium wages
computed for the limiting economy differ from data. These differences capture the granularity
of data which are assumed away in the limiting economy. Finally, estimates of material share of
costs α and dispersion in match-specific productivities ζ also affect predicted values calculated
via equation (5.2).

Estimates of intensity of use are only affected by the first two factors whereas those of sales
are affected by all of them. Columns (1) and (3) in Table 5.2 report the coefficient of determina-
tion of log-log regressions where observed values are projected on predicted values of intensity
of use and sales. Average customer size is omitted from this table because it is obtained as the
ratio of sales and intensity of use and so it is not meaningful to measure its goodness of fit.
Columns (2) and (4) in Table 5.2 report similar results but using average trade shares observed
in data πod(•,−) instead of the corresponding fitted values π∗od(•,−) for sourcing probabilities.
These columns help assess the loss of fit arising from gravity regressions. These results suggest
that (a) fits for sales are worse than intensity of use due to the third and fourth factors, (b) fits for
firms’ destination-specific sales are the worse than firms’ overall sales due to the second factor,
(c) fit of gravity regressions causes substantial loss of fit only for aggregate trade flows due to
the first factor.

Table 5.3 reports how the estimated model performs in comparison to the empirical regular-
ities documented in Section 2. I focus only on the upstream (intensity of use) and downstream

is given by ∑d πod (•, •). Together, they imply that the fixed effect estimate for firm s can be expressed as(
co(s)−ζ

)∗
= ∑b∈M πod(s, b).
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Table 5.3: Model Fit: Margins of Firms’ Sales

Sales Destination-Specific Sales Trade Flows

(1) (2) (3) (4) (5) (6)

Data:
Intensity of Use 81% 82% 94% 80% 87% 94%
Average Customer Size 19% 18% 6% 20% 13% 6%

Model:
Intensity of Use 73% 100% 61% 76% 71% 100%
Average Customer Size 27% 0% 39% 24% 29% 0%

Fixed Effects:
Seller×Year — — X — — —
Origin×Year — X — — — X
Destination×Year — — — — — X

Data Level:
Seller×Year • • — — — —
Seller×Destination×Year — — • • — —
Origin×Destination×Year — — — — • •

# observations 5.6×106 5.6×106 18.2×106 18.2×106 58,390 58,390

Note. Columns (1) and (2) report the contribution of factors: intensity of use and average customer size, to the
variance of firms’ sales (as per equation (2.1)) in the data (top panel) and in the model (bottom panel). Columns (3)
and (4) report the contribution of those factors to the variance of firms’ destination-specific sales (as per equation
(A.1)). Columns (5) and (6) report the same for trade flows between districts (as per equation (A.2)).

(average customer size) margins and not the three-way decomposition in Section 2. This is be-
cause the model does not meaningfully differentiate between the first and second factors in
expectation and further, it is the joint contribution of both these factors that plays a role in en-
dogenous network formation. Table 5.3 shows that the intensity of use margin explains a vast
majority of the variation in firms’ sales in the estimated model as is the case in the data. This
is true across all columns in the data qualitatively. Quantitatively, all columns except (3) pro-
vide a reasonably good fit. In column (3), the loss of fit can be attributed to the second factor.
With this, I proceed to counterfactual analysis where I study the contribution of these margins
in facilitating the change from the initial state to the counterfactual state.

6 Counterfactual Analysis

This section illustrates how the model can be used to assess the consequences of micro- and
macro- shocks to the spatial economy. The procedure for counterfactual analysis proposed in
Section 4.3 allows evaluation of welfare gains at the district level as well as the impact on firms’
sales and intensity of use of these shocks. First, I discuss a counterfactual experiment that re-
duces trade frictions across state borders. Second, I discuss how the production network of
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firms changes in response to an aggregate shock that uniformly reduces external trade frictions.
Finally, I examine the implications of neutralizing firm-level distortions when they are either
positively or negatively correlated with firm size on aggregate and firm-level outcomes.

6.1 Decline in Border Frictions

When India adopted the VAT in the early 2000s, its implementation was uneven. India has
a federal system of government — one that divides the powers of government between the na-
tional and the state governments. Commercial taxation being overseen by the state government,
individual states implemented their own respective VAT systems. This resulted in over 30 such
systems coming into place across India. While this increased formality and tax compliance, it
had the unintended consequence of regional segregation in organization of production, for three
reasons. First, VAT increases formality because firms prefer to source inputs from other firms
within the system to be able to collect tax credits on input purchases. Consequently, individ-
ual firms preferred to source inputs from firms within their own state’s VAT system as opposed
to one in a different state or VAT system. Second, the national government levied a sales tax
on firm-to-firm transactions across state borders which made more efficient suppliers of inter-
mediate inputs relatively more expensive if they were in a different state. Third, there were
cumbersome inspections, especially at state borders that caused logistical delays. In July 2017,
the federal government in India abolished all state VAT systems and introduced the Goods and
Services Tax to serve as a single national VAT system. This eliminated sales taxes on inter-state
movement of goods and harmonized the VAT structure across states in an attempt to reduce
such barriers to intra-national trade.

In this context, I consider the aggregate and firm-level impact of a 10% decline in trade costs
between district pairs crossing state borders to understand the potential impact of the GST re-
form on production networks in intra-national trade. Figure 6.1 suggests that this leads to sizable
welfare gains of 1% in some districts to as large as 8% in others. Across states, the median dis-
trict in larger states Gujarat, Maharashtra, and Tamil Nadu gains less than those in smaller states
West Bengal and Odisha. Changes in firms’ sales to other firms can be decomposed into changes
in its intensity of use and changes in its average customer size as follows:

∆Sales
Sales

=

upstream margin︷ ︸︸ ︷
∆Intensity of Use
Intensity of Use

+
∆Average Customer Size
Average Customer Size︸ ︷︷ ︸

downstream margin

+
∆Intensity of Use
Intensity of Use

× ∆Average Customer Size
Average Customer Size︸ ︷︷ ︸

second order term
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Figure 6.1: Gains from Decline in Border Frictions
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Note. The left panel is a stacked histogram of welfare changes across districts. The right panel is a box and
whiskers plot of welfare gains across districts within each state. States are arranged by economic size in descending
order. The data used in this figure pertains to 2015-16.

To determine the relative contribution of the upstream and downstream margins to the dis-
persion in changes in firms’ sales, I apply a Shapley decomposition (see Shorrocks (2013)). The
Shapley decomposition determines the expected marginal contribution of each of these margins
and the interaction term to the total variation in changes in firms’ input sales; intuitively, it as-
signs the fraction of the R2 of a regression that is due to each set of explanatory variables. Table
6.1 reports the results of this decomposition. Column (6) suggests that over half of the varia-
tion in changes in firms’ sales can be attributed to endogenous changes in the network or the
upstream margin while a third can be attributed to the downstream margin. In columns (1)-(5),
when considering variation among firms within each state, the upstream margin accounts for
only over third of the variation. This is because the incidence of the shock is at the state bor-
ders, so the contribution of the upstream margin is not as high as that seen in the cross-state
comparison in column (6).

A few points are in order. First, this decomposition is of sales to other firms and so would not
exist in models without input-output linkages. Second, in models with exogenous production
networks, i.e., with Cobb-Douglas technologies between firms, intensity of use does not respond
to shocks. The large variation in the upstream margin would therefore be missing. Finally, in
models with non-Cobb–Douglas technologies that endogenize the intensity with which existing
suppliers are used but where the extensive margin of firm-to-firm trade does not respond to
shocks, the explanatory power of the upstream margin would be understated. This is because
changes in intensity of use accrue not only from changes in intensity of use by existing cus-
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Table 6.1: Decline in Border Frictions: Margins of Changes in Firms’ Sales

State Maharashtra Tamil Nadu Gujarat West Bengal Odisha All
(1) (2) (3) (4) (5) (6)

∆Intensity of Use
Intensity of Use 40.76% 40.81% 36.49% 39.44% 38.06% 55.69%

∆Average Customer Size
Average Customer Size 29.37% 34.14% 45.74% 31.44% 43.02% 33.45%

∆Intensity of Use
Intensity of Use 29.86% 25.04% 17.76% 29.14% 18.91% 10.85%

×∆Average Customer Size
Average Customer Size

Note. This table reports the contribution of changes in firm’s margins to the variation in changes in firms’ sales
calculated using a Shapley decomposition when firm-year observations are split by state.

tomers but also from changes in the number of customers. By allowing for substitution across
both existing suppliers and new potential suppliers, the model is not only more general but also
more tractable since it does not require calibrating the extensive margin of firm-to-firm trade to
observed data.

6.2 Market Integration

A large body of recent literature studies barriers that impede trade between regions within a
country and the gains that accrue from a reduction in those barriers (for a review, see Donaldson
(2015)). I study the firm-level implications of a decline in relative costs of trading with firms in
other districts. This experiment conceptually captures improvements in transportation infras-
tructure as well as any other policy changes that affect trade outside an agent’s own location
relative to within its own location. I consider the counterfactual scenario where external trade
frictions decline by 10%.31 With a decline in external trade costs, a large majority of firms are
subject to opposing forces along the upstream and downstream margins.

Figure 6.2 depicts the effect of these margins of firms’ sales to other firms. To understand this,
it is useful to look at firms in four groups: (a) those in the top 5% in terms of sales; (b) those in the
top 10% but not in the top 5%; (c) those in the top 25% but not in the top 10%; and (d) those in the
bottom 75%. First, consider firms in group (a). Starting with the top left panel, these firms gain
the most in intensity of use. At the same time, they are more likely to have had customers who
are large, i.e., in the top 5% and whose sales declined. This implies that the average customer
size of these firms declines as shown in the top right panel. These firms are subject to opposing

31Counterfactual outcomes are evaluated using the procedure described in Appendix C.4 with aggregate shocks
given by:

δ̂od =

{
1

1.1−ζ o 6= d
1 o = d

There is no heterogeneity in shocks at the firm-level in this counterfactual experiment.
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Figure 6.2: Decline in Trade Frictions: Change in Firms’ Sales and its Margins
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Note. For each year, firms are grouped into 1000 bins according to their sales in the initial equilibrium. Each bin
consists of around 1000 firms. For firms in each of these bins, the top left panel plots the average percent change in
intensity of use when trade frictions decline, the top right panel does the same for average customer size, and the
bottom panel for sales to other firms.
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forces on the upstream and downstream margins. While they gain in intensity of use, the lose
sufficiently in average customer size that their sales decline. Second, consider firms in group
(b). These firms still gain above 4% in intensity of use but are also likely to have had customers
in the top 5% (whose sales declined). These firms are also subject to opposing forces on the up-
stream and downstream margins such that their sales increase. Third, consider firms in group
(c). These firms gain less than 4% in intensity of use, are less likely to have had customers in the
top 5% and so their average customer size increases. These firms are also subject to reinforcing
forces on the upstream and downstream margins such that their sales increase. Finally, consider
the large majority of firms in group (d). These firms lose in intensity of use, but are also much
less likely to have had customers in the top 5%, so their average customer size increases. These
firms are subject to opposing forces on the upstream and downstream margins. While they lose
in intensity of use, the gain sufficiently in average customer size that their sales increase.

Taking stock, as trade frictions decline, firms with low production costs become more success-
ful at farther or less remote destinations in getting selected for customers’ tasks. This comes at
the expense of firms with higher production costs who are now less successful in getting selected
for tasks both locally and elsewhere. While intensity of use of firms in the bottom three quartiles
decreases by as much as 8%, intensity of use for firms in the top quartile increases by as much
as 4%. At the same time, firms in the top decile are more likely to have customers in the top 5%
those for whom sales has declined. Those customers produce less and source fewer inputs from
firms in the top decile. Average customer size for firms in the top decile and quantity demanded
from them declines. On the contrary, firms in the bottom nine deciles are less likely to have cus-
tomers in the top 5% for whom sales has declined. For these firms, average customer size has in-
creased. The net outcome of these margins acting on firms at all quantiles is that large firms’ sales
to other firms shrink where as those of a large majority of firms in the lower quantiles expands.

6.3 Size-Dependent Distortions & Improvements in Allocative Efficiency

A substantial literature has documented the presence of firm-level distortions in developing
economies (for a review, see Atkin and Khandelwal (2019)). In this counterfactual experiment,
I study the implications of neutralizing positively versus negatively size-dependent distortions
affecting firms’ labor input choice. The notion for such gains is similar in spirit to that in the
closed economy model with labor wedges as in Hsieh and Klenow (2009), multiplier effects
from inter-sectoral linkages as in Jones (2013), and trade as in Swiecki (2017). Unlike these pa-
pers, I consider the effect of removing firm-level distortions through the lens of a model of trade
where production networks between firms respond endogenously. The experiment I consider
homogenizes labor market distortions. That is, it eliminates dispersion in those firm-specific la-
bor market “taxes” and hence consists of shocks at the firm level. In conducting this analysis,
I assume that all tax revenue is rebated equally to local households both in the initial state and
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Figure 6.3: Gains from Eliminating Size-Dependent Distortions
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Note. The left panel is a box and whiskers plot of welfare gains across districts within each state when distortions
are positively size-dependent and the right panel when distortions are negatively size-dependent. States are
arranged by economic size in descending order.

the counterfactual state and hence the level of the homogeneous tax rate in the counterfactual
scenario does not affect welfare calculations.32 Figure 6.3 shows that removing negatively size-
dependent distortions leads to higher welfare gains than removing positively size-dependent
distortions in all states except West Bengal. Figure 6.4 shows that terms of trade effects are neg-
ative in a large number of districts when removing negatively size-dependent distortions while
they are largely positive when removing positively size-dependent distortions.

The result of removing distortions at the firm-level is that firms that faced higher tax rates

32Size-dependent distortions are generated as:

1 + to(s) =

(1− q)−
1
η if distortions are positively size-dependent

q−
1
η if distortions are negatively size-dependent

,

where q denotes the quantile of the firm for sales to other firms and η denotes the shape parameter of Pareto
distributed distortions drawn from the following cumulative distribution function:

P (1 + to(s) ≤ 1 + t) =
(

1− (1 + t)−η
)

1 {t ≥ 0} .

For generating distortions, η was calibrated to 5. Counterfactual outcomes are evaluated using the procedure
described in Appendix C.4 with firm-level and aggregate shocks respectively given by:

δ̂od(s) = 1/(1+to(s))
−ζ(1−αo),

δ̂od = 1/E{to}
[
(1+to)

−ζ(1−αo)
]
.
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Figure 6.4: Elimination of Size-Dependent Distortions: Direct & Indirect Effects
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Note. The left panel plots direct and terms of trade effects when distortions are positively size-dependent and
the right panel when distortions are negatively size-dependent. Points are shaded by state in both panels,
darker shades indicate richer states. For each district, direct effects are calculated as the increase the total factor
productivity if each district were a closed economy. Terms-of-trade effects are calculated as the difference between
the welfare change from the experiment and the direct effects.

and were too small, now expand, with labor being reallocated to them as in models of misallo-
cation such as Restuccia and Rogerson (2008) and Hsieh and Klenow (2009). While this captures
direct effects, the analysis here also takes into account indirect effects through input-output link-
ages between firms and the endogenous response of the network structure to these shocks. To
examine how this experiment affects the production network between firms, I consider the de-
composition of changes in firms’ sales to other firms into changes in its intensity of use and
changes in its average customer size. Table 6.2 reports the results of a Shapley decomposition of
margins of sales. I find that changes in intensity of use explain majority of variation in changes in
firms’ sales — around 80% with positively size-dependent distortions and 75% with negatively
size-dependent distortions. The downstream margin is however less important in the case of
negatively size-dependent distortions than in the case of positively size-dependent distortions.
This is because firms with lower sales and facing larger distortions are likely to have had higher
production costs. Since their customers sourced inputs from relatively expensive suppliers, they
likely had higher production costs themselves and therefore change relatively less in size when
such distortions are neutralized.
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Table 6.2: Elimination of Size-Dependent Distortions: Margins of Changes in Firms’ Sales

State Maharashtra Tamil Nadu Gujarat West Bengal Odisha All
(1) (2) (3) (4) (5) (6)

Positively Size-Dependent Distortions
∆Intensity of Use
Intensity of Use 73.87% 82.02% 82.52% 80.47% 74.82% 81.16%

∆Average Customer Size
Average Customer Size 11.81% 8.23% 6.75% 9.89% 12.00% 8.34%

∆Intensity of Use
Intensity of Use 14.31% 9.74% 10.71% 9.63% 13.17% 10.48%

×∆Average Customer Size
Average Customer Size

Negatively Size-Dependent Distortions
∆Intensity of Use
Intensity of Use 66.57% 73.23% 80.73% 78.01% 71.25% 75.08%

∆Average Customer Size
Average Customer Size 1.34% 1.40% 1.57% 3.11% 1.11% 1.58%

∆Intensity of Use
Intensity of Use 32.07% 25.35% 17.69% 18.80% 27.57% 23.32%

×∆Average Customer Size
Average Customer Size

Note. This table reports the contribution of changes in firm’s margins to the variation in changes in firms’ sales
calculated using a Shapley decomposition when firm-year observations are split by state.

7 Conclusion

This paper developed a new framework for analyzing aggregate and firm-level consequences
of shocks to the spatial economy when customer-supplier linkages between firms evolve en-
dogenously. I documented that Indian firms with higher sales to other firms tend to have more
customers, tend to be used more intensively by those customers, and tend to have larger cus-
tomers. Firms’ intensity of use explains a vast majority of variation in their sales to other firms.
The model explains this through a single dimension of firm heterogeneity: production costs.
Firms with low production costs find more customers, are used more intensively by them and
since their customers use cheaper inputs intensively, they lower production costs and become
larger themselves. Furthermore, firms differ not only in their relative position in the produc-
tion network, but also across space thereby facing different wages when hiring labor as well as
different trade costs when sourcing inputs from potentially multiple locations.

Interdependence of link formation between firms in general equilibrium models of network
formation typically restrains the use of simulation-based estimation to arbitrary scale, i.e., with
very large numbers of firms. On the contrary, the procedure developed here makes estimation
and counterfactual analysis both scalable and tractable. Firms’ intensity of use was shown to be
a sufficient statistic for their production costs — a key endogenous object of interest. As a result,
estimation did not necessitate full solution of the model to obtain the distribution of produc-
tion costs. Besides, counterfactual analysis did not require large-scale simulation either and was
done under a large economy approximation to resolve aggregate uncertainty. In an empirical
application, I show that a 10% decline in inter-state border frictions has sizable welfare gains
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ranging from 1% in some districts to as high as 8% in others. Moreover, over half of the variation
in changes in firms’ sales to other firms can be explained by endogenous changes in the network
structure.

The framework developed here can be directly applied to answer questions that could be
broadly classified as market integration, technology improvements, and improvement in alloca-
tive efficiency; nevertheless, it can serve as a fertile baseline model to answer a wider variety of
questions where changes in the production network across firms can lead to aggregate conse-
quences. In pursuit of parsimonious parametrization, the model abstracts from several realistic
features of the network economy such as sectoral heterogeneity in technological requirements,
supply chain dynamics, industry dynamics of entry and exit, heterogeneous search frictions, and
richer bargaining environment between buyers and suppliers all of which are potential avenues
for future research.
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A Data & Empirical Regularities: Appendix

A.1 Summary Statistics

Table A.1 reports count statistics of firms and relationships between them each year accom-
panied by their breakdown into different categories. Figure A.1 plots the spatial distribution of
firm–year pairs across districts on their respective state maps. Figure A.2 plots the distribution
of firm-to-firm relationships across district pairs. Table A.2 reports distributions of firms’ sales
to other firms, # customers, and sales per customer. Table A.3 reports distributions of firms’
purchases from other firms, # suppliers, and purchases per supplier.

A.2 Margins of Firms’ Sales

The joint distribution of firms’ sales with intensity of use and average customer size is de-
picted in Figure A.3. Figure A.4 provides the results of decomposition of firms’ sales by district.
Figure A.5 provides the results of decomposition of firms’ sales by percentile bins. Similar to
Equation 2.1, I construct a decomposition of firms’ destination-specific sales as:

input salesod(s) =

upstream margin︷ ︸︸ ︷
Nod(s)×

∑b∈Md
πod(s, b)

Nod(s)
×

∑b∈Md
πod(s, b)× input costsd(b)

∑b∈Md
πod(s, b)︸ ︷︷ ︸

downstream margin

, (A.1)

where input salesod(s) denotes input sales of firm s to customers at d and Nod(s) denotes the
number of customers of s who are located at d. Table A.4 provides results of this decomposition
under different specifications.
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A.3 Margins of Intranational Trade

Trade flows between Indian districts aggregated from firm-to-firm sales show that districts
within the same state are more likely to trade than those across states. The overall level of trade
integration between districts as measured by the Head and Ries (2001) index is depicted in Fig-
ure A.6.33 Among all possible pairs of districts, around 40% do not trade at all. For district
pairs that trade with each other, I construct the following decomposition of trade flows into four
factors:

salesod =

upstream margin︷ ︸︸ ︷
Nod ×

∑s∈Mo Nod(s)
Nod

×
∑s∈Mo ∑b∈Md

πod(s, b)

∑s∈Mo Nod(s)
(A.2)

×
∑s∈Mo ∑b∈Md

πod(s, b)× input costsd(b)

∑s∈Mo ∑b∈Md
πod(s, b)︸ ︷︷ ︸

downstream margin

,

where salesod = ∑s∈Mo ∑b∈Md
salesod(s, b), Nod denotes the sellers from o that sell at d. In this

decomposition, the first three margins capture the role of the upstream margin whereas the
third margin captures the role of the downstream margin in driving differences in aggregate
trade flows. In considering this decomposition, I depart from the trade literature where these
margins are regrouped such that the first margin is called the extensive margin of trade defined
as the number of firms from o that sell at d and the remaining three margins are together called
the intensive margin of trade average sales across the firms from o that enter d. 34 This is so
as to emphasize the role of endogenous network formation and cross-border supply chains in
determining aggregate trade flows. Table A.5 reports the results from this decomposition. Figure
A.7 depicts the breakdown of trade flows across district pairs into the upstream and downstream
margins.

33For any pair of districts (o, d), the Head and Ries (2001) index is computed as the ratio
√

salesod×salesdo
salesoo×salesdd

.
34For example, see Eaton et al. (2011) and Fernandes et al. (2018) for such decomposition of the margins of

international trade between countries where it is documented that the extensive margin accounts for over half the
variation in trade flows between countries.
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Figure A.1: Distribution of Firms across Districts

Maharashtra

Gujarat
Tamil Nadu

Odisha
West Bengal

Note. Districts are shaded by # firm–year observations (from columns (1–5) in Table A.1, middle panel). Darker
shades reflect lower values. Relative areal extent of states is not up to scale.
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Figure A.2: Distribution of Firm-to-Firm Relationships across District Pairs
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Note. This figure depicts the 141× 141 matrix of # relationships between district pairs in 2015-2016 (from column
(5) in Table A.1, bottom panel). Darker cells reflect higher values. Districts are arranged first by state and then
alphabetically within states on both axes.

Figure A.3: Margins of Firms’ Sales: Joint Distribution with Sales

0

25

50

75

100

0 25 50 75 100
Intensity of Use %ile bins

In
pu

t S
ale

s %
ile

 bi
ns

0

25

50

75

100

0 25 50 75 100
Average Customer Size %ile bins

In
pu

t S
ale

s %
ile

 bi
ns

Note. In this figure, firms are classified into 100× 100 bins based on their total sales in input markets and intensity
of use (left panel) or average customer size (right panel). This is a two-dimensional histogram where each cell
in this 100 × 100 matrix is shaded as per the quantile of the count of firms in the bin such that darker shades
correspond to higher quantiles.
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Table A.1: Summary Statistics: Firms and their Relationships

2011-2012 2012-2013 2013-2014 2014-2015 2015-2016 All
(1) (2) (3) (4) (5) (6)

# Firms 1,616 1,743 1,899 2,040 2,107 2,572
Neither 23% 25% 24% 24% 24% 18%
Buy 16% 16% 16% 18% 18% 15%
Sell 19% 17% 17% 15% 14% 17%
Both 42% 42% 43% 43% 43% 50%

Gujarat 21% 21% 22% 24% 24% 25%
Maharashtra 42% 41% 40% 38% 36% 34%
Odisha 5% 5% 5% 6% 6% 6%
Tamil Nadu 24% 25% 25% 25% 25% 27%
West Bengal 8% 8% 8% 8% 9% 8%

# Relationships 17,681 18,547 21,031 22,600 23,786 103,646
Intra-District 58% 57% 57% 58% 57% 58%
Inter-District 37% 38% 38% 38% 39% 38%
Inter-State 5% 5% 5% 4% 4% 4%

Note. Figures for # firms and # relationships are in units of thousands. Columns (1–5) report values for each year
and column (6) the total across all years. The top panel breaks down # firms by their participation in the network,
i.e., whether they buy from and sell to other firms. The middle panel breaks down firms by the state in which
they are located. The bottom panel reports the breakdown of # relationships based on whether the customer and
supplier are located in the same district, different districts or different states altogether. For the top and middle
panels, column (6) reports statistics pertaining to unique firms across all years. For the bottom panel, column (6)
reports the sum of columns (1–5).
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Table A.2: Summary Statistics: Firms’ Customers and Sales

Percentile: 90 75 50 25 10
(1) (2) (3) (4) (5)

# Customers:
2011-2012 39 14 4 2 1
2012-2013 39 14 4 2 1
2013-2014 41 15 5 2 1
2014-2015 42 15 5 2 1
2015-2016 44 15 5 2 1

Sales per Customer:
2011-2012 1,850 536 153 44 13
2012-2013 1,993 570 162 47 14
2013-2014 2,027 577 165 49 14
2014-2015 2,160 609 171 50 14
2015-2016 2,121 610 174 51 14

Sales to other Firms:
2011-2012 18,620 4,606 987 158 25
2012-2013 19,702 4,882 1,037 167 26
2013-2014 21,225 5,199 1,095 175 27
2014-2015 22,531 5,517 1,143 177 27
2015-2016 22,936 5,690 1,184 183 27

Note. For each year and for firms that sell to other firms, the top panel reports the median, top and bottom deciles,
and upper and lower quartiles of # customers. The middle panel reports the same for sales per customer and the
bottom panel for sales to other firms. All sales figures are reported in units of 1000 INR.
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Table A.3: Summary Statistics: Firms’ Suppliers and Purchases

Percentile: 90 75 50 25 10
(1) (2) (3) (4) (5)

# Suppliers:
2011-2012 46 21 8 3 1
2012-2013 44 20 8 3 1
2013-2014 45 21 8 3 1
2014-2015 43 20 8 3 1
2015-2016 44 21 8 3 1

Purchases per Supplier:
2011-2012 2,628 752 228 77 30
2012-2013 2,871 811 243 81 32
2013-2014 2,978 841 251 84 33
2014-2015 2,983 845 249 83 33
2015-2016 2,941 835 249 84 33

Purchases from other Firms:
2011-2012 28,005 7,822 2,182 575 150
2012-2013 29,137 8,067 2,252 589 152
2013-2014 31,825 8,826 2,410 630 163
2014-2015 30,445 8,311 2,318 614 159
2015-2016 31,136 8,506 2,403 633 164

Note. For each year and for firms that purchase from other firms, the top panel reports the median, top and bottom
deciles, and upper and lower quartiles of # suppliers. The middle panel reports the same for purchases per supplier
and the bottom panel for purchases from other firms. All purchases figures are reported in units of 1000 INR.

Table A.4: Margins of Firms’ Sales: Contribution to Total Variance

Sales Destination-Specific Sales

(1) (2) (3) (4) (5)

# Customers 35% 36% 37% 23% 22%
Intensity per Customer 46% 46% 57% 57% 59%
Average Customer Size 19% 18% 6% 20% 19%

Fixed Effects:
Seller×Year — — X — —
Origin×Year — X — — X
Destination×Year — — — — X

Data Level:
Seller×Year • • — — —
Seller×Destination×Year — — • • •

# observations 5.6×106 5.6×106 18.2×106 18.2×106 18.2×106

Note. Columns (1) and (2) report the contribution of factors: # customers, intensity per customer, and average
customer size, to the variance of firms’ sales as per equation (2.1). Column (3), (4), and (5) report the contribution
of those factors to the variance of firms’ destination-specific sales as per equation (A.1).
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Figure A.4: Margins of Firms’ Sales: Contribution to Variance, by District

Gujarat Maharashtra Odisha Tamil Nadu West Bengal
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Note. For firms grouped by district–year, the contribution of factors: # customers, intensity per customer, and
average customer size, to the variance of firms’ sales was calculated as per equation (2.1). This figure is a box and
whiskers plot of the contribution of these factors across districts arranged in a state×year grid.
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Figure A.5: Margins of Firms’ Sales: Contribution to Variance, by Sales Quantile
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Note. For firms grouped into 100 equal-sized bins, the contribution of factors: # customers, intensity per customer,
and average customer size, to the variance of firms’ sales was calculated as per equation (2.1). This figure is a
smoothed regression plot of the contribution of these factors across those bins.

Figure A.6: Margins of Intranational Trade: Trade Integration between Districts

Gujarat Maharashtra Odisha Tamil Nadu West Bengal

Note. This figure depicts the (symmetric) 141× 141 matrix of Head and Ries (2001) indexes of district pairs where
cells with higher values are shaded darker. Districts are first ordered by state and then alphabetically within
each state. Blocks along the diagonal depict values for intra-state district pairs while other areas depict inter-state
district pairs.
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Table A.5: Margins of Intranational Trade: Contribution to Total Variance

(1) (2) (3) (4)

# Sellers 59% 57% 61% 58%
# Customers per Seller 8% 9% 8% 10%
Intensity per Customer 20% 20% 24% 26%
Average Customer Size 13% 13% 7% 6%

Fixed Effects:
Origin×Year — X — X
Destination×Year — — X X

Data Level:
Origin×Destination×Year • • • •

# observations 58,390 58,390 58,390 58,390
# dropped observations (zeros) 41,015 41,015 41,015 41,015
# district pairs 1412 × 5 1412 × 5 1412 × 5 1412 × 5

Note. This table reports the contribution of factors: # sellers, # customers per seller, intensity per customer, and
average customer size, to the variance of trade flows between districts, as per equation (A.2).
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Figure A.7: Margins of Intranational Trade: Upstream & Downstream Margins

Gujarat Maharashtra Odisha Tamil Nadu West Bengal
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Trade Flows

Note. Across district pairs, the top left panel depicts the 141× 141 matrix of intensity of use (i.e., the upstream
margin), the top right depicts average customer size (i.e., the downstream margin), and the bottom depicts trade
flows or sales from origin to destination. Darker cells reflect higher values. Districts are arranged first by state and
then alphabetically within states on both axes. All values pertain to 2015-2016.
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B Theoretical Framework: Appendix

B.1 Proof of Propositions 1 and 2

Joint Distribution of the Lowest and the Second Lowest Effective Costs We begin by char-
acterizing the joint distribution of the lowest and second lowest effective cost available to buyer
b located at d, F̃pd

(
p(1), p(2)

)
= P

(
p∗d (b, k) ≤ p(1), pd (b, k) ≥ p(2)

)
. To do so, we evaluate the

probability with which b receives exactly one offer with an effective cost no greater than p(1)

and no other offers less than p(2)(> p(1)). The lowest cost offer p(1) can be from any one of the
locations in J . We evaluate the probability with which this offer is from any given location o
and sum it across all locations. The probability with which b receives one offer with an effective
cost no greater than p(1) from o and no other offers less than p(2) across all locations is given by:



(Mo
1 ) λ

M P
(

co(s)τod
aod(s,b,k) ≤ p(1)

)
if o 6= d

×
(

1− λ
M P

(
co(s)τod

aod(s,b,k) ≤ p(2)
))Mo−1

×
(

1− λ
M P

(
cd(s)τdd

add(s,b,k) ≤ p(2)
))Md−1

×∏o′/∈{o,d}

(
1− λ

M P
(

co′ (s)τo′d
ao′d(s,b,k) ≤ p(2)

))Mo′

(Mo−1
1 ) λ

M P
(

co(s)τod
aod(s,b,k) ≤ p(1)

)
if o = d

×
(

1− λ
M P

(
co(s)τod

aod(s,b,k) ≤ p(2)
))Mo−2

×∏o′ 6=o

(
1− λ

M P
(

co′ (s)τo′d
ao′d(s,b,k) ≤ p(2)

))Mo′

Under Assumption 6, the probability with which b encounters exactly one supplier who can
deliver at a cost no greater than p(1) and encounters no other suppliers with offers less than p(2)

across all locations is given by:

F̃pd

(
p(1), p(2)

)
= ∑

o
λµoP

(
co(s)τod

aod(s, b, k)
≤ p(1)

)
exp

(
−∑

o′
λµo′P

(
co′(s)τo′d

ao′d(s, b, k)
≤ p(2)

))

Using the limit limt→∞ λta
ζ
0,t → 1, this can be further simplified as Ad

(
p(1)

)ζ
exp

(
−Ad

(
p(2)

)ζ
)

where Ad = ∑o µoτ
−ζ
od E

[
co(·)−ζ

]
is obtained as follows:

Ad pζ = ∑
o

λµoP

(
co(s)τod

aod(s, b, k)
≤ p

)
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= ∑
o

λµoP

(
aod(s, b, k) ≥ co(s)τod

p

)
= ∑

o
λµoE{co}

[
1− Fa

(
co(s)τod

p

)]
= ∑

o
λµoE{co}

[
aζ

0

(
co(s)τod

p

)−ζ

1
{

co(s)τod
p

≥ a0

}
+ 1

{
co(s)τod

p
< a0

}]

=

(
∑
o

µoτ
−ζ
od E

[
co(·)−ζ

])
pζ

=⇒ Ad = ∑
o

µoτ
−ζ
od E

[
co(·)−ζ

]

The density function is then obtained by the negative cross-derivative of F̃pd

(
p(1), p(2)

)
as

follows:

F̃′pd

(
p(1), p(2)

)
= −

∂2Fpd

(
p(1), p(2)

)
∂p(1)∂p(2)

= −
∂

(
Ad

(
p(1)

)ζ
)

∂p(1)

∂

(
exp

(
−Ad

(
p(2)

)ζ
))

∂p(2)

= ζ2A2
d

(
p(1)p(2)

)ζ−1
e−Ad(p(2))

ζ

Distribution of Effective Prices We derive an expression for Fpd(p), that is, the probability
with which any firm b located in d faces an effective price no greater than p for one of its tasks k.
Firm b faces an effective price no greater than p if the second-lowest cost available to it is no less
than p. This is obtained as:

Fpd(p) =
∫ p

0

(∫ p(2)

0
F′pd

(
p(1), p(2)

)
dp(1)

)
dp(2)

= 1− Ad pζ exp
(
−Ad pζ

)
− exp

(
−Ad pζ

)
Derivation of Market Access From equation 3.7, we have:

E
[
co(·)−ζ

]
= E


w1−α

o

(
∏

Ko(·)
k=1 po(·, k)1/Ko

)α

zo(·)


−ζ
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∏
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This implies that {Ad}d∈J solves the following fixed point problem:

Ad = ∑
o

µoτ
−ζ
od Γ

(
1− ζ

θo

)
E

[
Γ
(

2− αo

Ko (·)

)Ko(·)
]

T
ζ

θo
o w−ζ(1−αo)

o Aαo
o

It can be similarly shown that effective prices for needs faced by households is also given
by Fpd (·) The following lemma states that the above fixed point problem that solves for market
access is well-defined in the sense that it admits a unique positive solution. The proof strategy
follows from Allen et al. (2020).

Lemma. The following system of equations

Ad = ∑
o

Rod Aαo
o ,

Rod = µoτ
−ζ
od Γ

(
1− ζ

θo

)
E{Ko}

[
Γ
(

2− α

Ko

)Ko
]

T
ζ

θo
o w−ζ(1−αo)

o .

1. has at least one positive solution

2. has at most one positive solution (up to scale)

3. the unique solution can be computed as the limit of a simple iterative procedure.

Proof. First, I establish existence of positive solution to the system of equations. Define operator
T : R

J
++ → R

J
++ where T (A) = (∑o Ro1Aαo

o , · · · , ∑o RoJ Aαo
o )
′. Note that all components of Rod

are positive and finite. Then, by construction, for any d, not all Rods are zero. Therefore, for
any A � 0, ∑o Ro1Aαo

o ≥ A > 0. Further, there exists Ā < ∞ such that ∑o Rod Aαo
o ≤ Ā. Now

consider the operator T : A → A defined by T (A1, · · · , AJ) = (∑o Ro1Aαo
o , · · · , ∑o RoJ Aαo

o )
′.

Suppose A =
{

A ∈ R
J
++ | A ≤ Ad ≤ Ā∀d

}
.Then, if A � 0, it follows that T (A) � 0. Note
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that A is closed and bounded. Since A ⊂ R
J
++, this implies that A is compact. Further, A is

non-empty and convex, and T is continuous. Then, by Brouwer’s fixed point theorem, T (•) has
a fixed point. This establishes existence of a solution the system of equations.

To establish uniqueness, let’s suppose by way of contradiction that the system of equations
has two different solutions A(0), A(1) that are not linear transformations of each other. Denote

ā = maxd
A(1)

d

A(0)
d

and a = mind
A(1)

d

A(0)
d

. Notice that ā
a ≥ 1. Thus the system of equations can be

expressed as:

A(1)
d

A(0)
d

=
∑o Rod
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A(1)

d

A(0)
d

)1−αo (
A(0)

d
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A(0)
d
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(
A(1)

d

A(0)
d

)
and α = min αo, then we have:
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(
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o
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d̄

ā1−α ≥ ā

=⇒ āα ≤ 1

=⇒ ā ≤ 1

Similarly, we can show that a ≥ 1. This implies that ā
a ≤ 1. But by construction ā

a ≥ 1.
Therefore, it must be the case that a

a = 1 or A(0) = A(1). This establishes uniqueness.
Next, I show that the solution to the system of equations can be obtained via a simple iterative

procedure. Starting from any strictly positive A(0), we construct a sequence A(t) successively in
the following way,

A(t)
d = ∑

o
Rod

(
A(t−1)

o

)αo
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Denote ā(t) = maxd
A(t)

d

A(t−1)
d

and a(t) = mind
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d
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d

. Notice that ā(t)
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)
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Similarly, we can show that a(t)

(a(t−1))
1−ᾱ ≥ 1. This implies the following

ā(t)(
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)1−α
≤ a(t)(
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Since ā(t)
a(t)
≥ 1∀t, this implies that limt→∞

ā(t)
a(t)

= 1. That is, the solution can be computed as
the limit of a simple iterative procedure.
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B.2 Proof of Proposition 2

P

(
pd(b, k)
p∗d(b, k)

≤ m̄ | pd(b, k) = p(2)
)
= P

(
p∗d(b, k) ≥ pd(b, k)

m̄
| pd(b, k) = p(2)

)
= 1−P

(
p∗d(b, k) ≤ pd(b, k)

m̄
| pd(b, k) = p(2)

)

= 1−
∫ pd(b,k)

m̄

0

F̃′pd

(
p(1), pd(b,k)

m̄

)
F′pd

(
pd(b,k)

m̄

) dp(1)

= 1− m̄−ζ

B.3 Proof of Proposition 3

Note. Some relevant values of polygamma functions can be calculated as follows:

ψ(0)(1) = −γ,

ψ(1)(1) =
π2

6
,

ψ(2)(1) = 2ζ(3),

ψ(3)(1) =
π4

15
,

ψ(n)(2) = ψ(n)(1) + (−1)n n!,

where γ is the Euler-Mascheroni constant, π is Archimedes’ constant, and ζ(3) is the Apéry
constant.

Lemma 1. If a random variable X with support over R>0 is such that P (X ≤ x) = e−(
x
s )
−α

, then the
following moment conditions hold:

E
[

X j
]
= Γ

(
1− j

α

)
sj ∀j < α,

E [log X] = −ψ(0)(1)
α

+ log s,

E
[
(log X−E [log X])2

]
=

ψ(1)(1)
α2 .

Proof. Omitted.

Lemma 2. If a random variable X with support over R>0 is such that P (X ≤ x) = 1−
( x

s
)α e−(

x
s )

α

−
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e−(
x
s )

α

, then the following moment conditions hold:

E
[

X j
]
= Γ

(
2 +

j
α

)
sj ∀j > −2α,

E [log X] =
ψ(0)(2)

α
+ log s,

E
[
(log X−E [log X])2

]
=

ψ(1)(2)
α2 .

Proof. Omitted.

Corollary 1. The distribution of idiosyncratic productivities of firms at location o satisfies the following
moment conditions:

E
[
(zo (·))j

]
= Γ

(
1− j

θ

)
T

j
θ

o ,

E [log zo (·)] = −
ψ(0)(1)

θ
+

1
θ

log To,

E
[
(log zo (·)−E [log zo (·)])2

]
=

ψ(1)(1)
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Proof. From Assumption 1, notice that:

P (zo ≤ z) = e−Toz−θ
1 {z > 0}

= exp

(
−
(

z
T1/θ

o

)−θ
)

1 {z > 0}

The results then follow from Lemma 1.

Corollary 2. The distribution of effective price faced by firms at location d satisfies the following moment
conditions:

E
[
(pd (·, ·))j | Ad

]
= Γ

(
2 +

j
ζ

)
A
− j

ζ

d ,

E [log pd (·, ·) | Ao] =
ψ(0)(2)

ζ
− 1

ζ
log Ad,

E
[
(log pd (·, ·)−E [log pd (·, ·)])2

]
=

ψ(1)(2)
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Proof. From Proposition 1, notice that:

P (pd(·, ·) ≤ p) =
(

1− e−Ad pζ − Ad pζe−Ad pζ
)

1 {p ≥ 0}
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=
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d

)ζ
−( p

A−1/ζ

d

)ζ

exp

−( p

A−1/ζ

d

)ζ
 1 {p > 0}

The results then follow from Lemma 2.

Proof of Equation (3.10) Starting with equation (3.7), note that

log co(s) = (1− αo) log wo +
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Ko(s)
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Proof of Equation (3.12)
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Ko (·)

Ko(·)

∑
k=1

(log po(·, k)−E [log po (·, ·)])
)2

| Ko


+ E

[
(log zo (·)−E [log zo (·)])2

]
= E

[
α2

o

Ko (·)2

Ko(·)

∑
k=1

E
[
(log po(·, k)−E [log po (·, ·)])2 | Ko

]]
+ Var [log zo (·)]

= E

[
1

Ko (·)

]
α2

oVar [log po(·, ·)] + Var [log zo (·)]

= E

[
1

Ko

]
α2

oψ(1)(2)
ζ2 +

ψ(1)(1)
θ2

o
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Proof of Equations (3.11) and (3.13) The jth moment of marginal costs is given by:

E
[
(co(·))j

]
= E


wj(1−α)

o

(
∏

Ko(·)
k=1 po(·, k)1/Ko(·)

)jα

(zo(·))j




= wj(1−α)
o E

[
Ko(·)

∏
k=1

po(·, k)jαo/Ko(·)

]
E
[
(zo(·))−j

]
= wj(1−α)

o E

[
E

[
Ko(·)

∏
k=1

po(·, k)jαo/Ko(·) | Ko

]]
E
[
(zo(·))−j

]
= wj(1−α)

o E

[
Ko(·)

∏
k=1

E
[

po(·, k)jαo/Ko(·) | Ko

]]
E
[
(zo(·))−j

]
= wj(1−α)

o E

[
Ko(·)

∏
k=1

Γ
(

2 +
αj

ζKo(·)

)
A
− jαo

ζKo(·)
o

]
Γ
(

1 +
j

θo

)
T
− j

θo
o

= wj(1−α)
o E

[
Γ
(

2 +
αj

ζKo(·)

)Ko(·)
]

A
− jαo

ζ
o Γ

(
1 +

j
θo

)
T
− j

θo
o

= wj(1−α)
o E

[
Γ
(

2 +
αj

ζKo(·)

)Ko(·)
]

A
− jαo

ζ
o Γ

(
1 +

j
θo

)
T
− j

θo
o

Equation (3.11) follows from the case where j = 1. Equation (3.13) also follows from noting

that CV [co (·)]2 =
E[(co(·))2]
E[(co(·))]2

− 1 and using cases with j ∈ {1, 2}.

B.4 Proof of Proposition 4

Proof of Equation (3.14) Consider a pair of firms s located in o and b located in d. Now, sup-
pose the marginal cost of firm s from o and it’s cost of shipping goods to d are co(s) and τod

respectively. For any task k and match-specific productivity aod(s, b, k) = a, the effective cost
incurred by s of delivering its goods for task k by b is co(s)τod

a . Supplier s is selected by b for task k
if b encounters s with match-specific productivity a and b does not encounter any other supplier
for whom it is effectively less costly to deliver the good (including the event that b meets s and
the match-specific productivity realized is higher than a). The probability with which b selects s
for any of its tasks with match-specific productivity a is given by:

π0
od(s, b, k | a) =

λ

M
× ∏

s′∈M

(
1− λ

M
P

(
co′(s′)τo′d

ao′d(s′, b, k)
≤ co(s)τod

a

))

=
λ

M
× exp

(
∑

s′∈M
ln
(

1− λ

M
P

(
co′(s′)τo′d

ao′d(s′, b, k)
≤ co(s)τod

a

))
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Since λ = o(M), considering λ
M � 1 and using the approximation ln (1 + x) ≈ x for |x| � 1,

the above expression simplifies as:

π0
od(s, b, k | a) =

λ

M
exp

(
− λ

M ∑
s′∈M

P

(
co′(s′)τo′d

ao′d(s′, b, k)
≤ co(s)τod

a

)

Taking expectation over all possible realizations of aod(s, b, k), we obtain:

π0
od(s, b, k) = E{a}

[
π0

od(s, b, k | a)
]

=
λ

M

∫ ∞

0
exp

(
− λ

M ∑
s′∈M

P

(
co′(s′)τo′d

ao′d(s′, b, k)
≤ co(s)τod

a

))
dFa(a)

=
λ

M

∫ ∞

a0

exp

(
− λ

M ∑
s′∈M

P

(
ao′d(s′, b, k) ≥ co′(s′)τo′d

co(s)τod
a
))

d
(

1− (a/a0)
−ζ
)

=
λaζ

0
M

∫ ∞

a0

exp

(
−

λaζ
0

M ∑
s′∈M

1
(

co′(s′)τo′d
co(s)τod

a ≥ a0

)(
co′(s′)τo′d
co(s)τod

a
)−ζ

− λ

M ∑
s′∈M

1
(

co′(s′)τo′d
co(s)τod

a ≤ a0

))
ζa−ζ−1da

=
1
M

∫ ∞

0
exp

(
− 1

M ∑
s′∈M

(
co′(s′)τo′d
co(s)τod

)−ζ

a−ζ

)
d
(
−a−ζ

)
=

1
M

∫ ∞

0
exp

(
−

1
M ∑s′∈M co′(s′)−ζτ

−ζ
o′d

co(s)−ζτ
−ζ
od

a−ζ

)
d
(
−a−ζ

)
=

co(s)−ζτ
−ζ
od

∑s′∈M co′(s′)−ζτ
−ζ
o′d

Γ(1)

=
co(s)−ζτ

−ζ
od

∑s′∈M co′(s′)−ζτ
−ζ
o′d

Here, in the fifth line we utilize Assumption 6 which implies that in sufficiently large economies
limt→∞ λta

ζ
0,t → 1 and limt→∞ a0,t → 0 such that λ

M ∑s′∈M 1
(

co′ (s
′)τo′d

co(s)τod
a ≤ a0

)
→ 0 for all firms

s′. Since πod(s, b, k) is independent of the identity of the task k, we write π0
od(s, b) = π0

od(s, b, k).
Further, since π0

od(s, b) is independent of the identity of the buyer at any location d, we write
π0

od(s,−) = π0
od(s, b).
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Proof of Equation (3.15) The probability with which a firm s located in o is selected by any
given firm at d for at least one of its tasks is given by:

P (s gets selected for at least one task at d) =
∞

∑
K=1

P (Kd(b) = K)
(

1−
(

1− π0
od(s,−)

)K
)

=

(
1−

∞

∑
K=1

P (Kd(b) = K)
(

1− π0
od(s,−)

)K
)

=

(
1− e−κd

(1− e−κd)

∞

∑
K=1

(
κd
(
1− π0

od(s,−)
))K

K!

)

=

(
1− e−κd

(1− e−κd)

(
eκd(1−π0

od(s,−)) − 1
))

=
1− e−κdπ0

od(s,−)

1− e−κd

B.5 Proof of Proposition 5

Proof of Equation (3.16) The probability with which any firm at d sources from firms at o for
any of its tasks is given by

π0
od (•,−) =

(
lim
t→∞

Mo

M

)(
lim
t→∞

1
Mo

∑
s∈Mo

π0
od(s,−)

)

=

(
lim
t→∞

Mo

M

)(
lim
t→∞

1
Mo

∑
s∈Mo

co(s)−ζτ
−ζ
od

Ad

)

=
µoE

[
co(·)−ζ

]
τ
−ζ
od

Ad

=

µoΓ
(

1− ζ
θo

)
T

ζ
θo

o w−ζ(1−αo)
o E

[
Γ
(

2− αo
Ko(·)

)Ko(·)
]

Aαo
o τ
−ζ
od

Ad

Proof of Equation (3.17) The probability with which any firm at d sources at least one task
from o is given by:

P (d firm sources at least one task from o) =
∞

∑
K=1

P (Kd(·) = K)
(

1−
(

1− π0
od(•,−)

)K
)

=

(
1−

∞

∑
K=1

P (Kd(·) = K)
(

1− π0
od(•,−)

)K
)

=

(
1− e−κd

(1− e−κd)

∞

∑
K=1

(
κd
(
1− π0

od(•,−)
))K

K!

)
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=

(
1− e−κd

(1− e−κd)

(
eκd(1−π0

od(•,−)) − 1
))

=
1− e−κdπ0

od(•,−))

1− e−κd

B.6 Proof of Proposition 6

For any realization of σ, labor demand by firm b at d can be expressed as:

ld(b, σ) =
1

wd (σ)
(1− αd) cd(b, σ)yd(b, σ)

Substituting the above expression in the labor market clearing for location d, we obtain:

Ld = ∑
b∈Md

ld(b, σ)

= ∑
b∈Md

1
wd (σ)

(1− αd) cd(b, σ)yd(b, σ)

=⇒ ∑
b∈Md

cd(b, σ)yd(b, σ) =
wd (σ) Ld

1− αd

Goods market clearing condition for firm s located at o can be simplified as:

yo(s, σ) = ∑
d

∑
b∈Md

∑
k∈Kd(b)

τod(s, σ)mod(s, b, k, σ)

aod(s, b, k, σ)

+ ∑
d

∑
i∈Ld

∑
n∈Nd(i)

τod(s, σ)qod(s, i, n, σ)

god(s, i, n, σ)

=⇒ co(s, σ)yo(s, σ) = ∑
d

αd ∑
b∈Md

 1
Kd(b)

∑
k∈Kd(b)

1
{

s = s∗d(b, k, σ)
}

m̄d(b, k, σ)

 cd(b, σ)yd(b, σ)

+ ∑
d

∑
i∈Ld

 1
Nd(i)

∑
n∈Nd(i)

1
{

s = s∗d(i, n, σ)
}

m̄d(i, n, σ)

 (wd(σ) + Πd(σ))

=⇒ ∑
s∈Mo

co(s, σ)yo(s, σ)︸ ︷︷ ︸
(1) Supply

= ∑
d

αd ∑
b∈Md

 1
Kd(b)

∑
k∈Kd(b)

1
{

s∗d(b, k, σ) ∈ Mo
}

m̄d(b, k, σ)

 cd(b, σ)yd(b, σ)

︸ ︷︷ ︸
(2) Intermediate Input Demand
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+ ∑
d

∑
i∈Ld

 1
Nd(i)

∑
n∈Nd(i)

1
{

s∗d(i, n, σ) ∈ Mo
}

m̄d(i, n, σ)

 (wd(σ) + Πd(σ))︸ ︷︷ ︸
(3) Final Consumption Demand

We can simplify term (1) by making use of the labor market clearing condition as:

Supply = ∑
s∈Mo

co(s, σ)yo(s, σ)

=
wo(σ)Lo

1− αo

We can simplify term (2) as follows:

Intermediate Input Demand = ∑
d

αd ∑
b∈Md

 1
Kd(b)

∑
k∈Kd(b)

1
{

s∗d(b, k, σ) ∈ Mo
}

m̄d(b, k, σ)

 cd(b, σ)yd(b, σ)

= ∑
d

αd

(A)︷ ︸︸ ︷
1

Md
∑

b∈Md

 1
Kd(b)

∑
k∈Kd(b)

1
{

s∗d(b, k, σ) ∈ Mo
}

m̄d(b, k, σ)

 cd(b, σ)yd(b, σ)

1
Md

∑
b∈Md

cd(b, σ)yd(b, σ)︸ ︷︷ ︸
(B)

× ∑
b∈Md

cd(b, σ)yd(b, σ)︸ ︷︷ ︸
=

wd(σ)Ld
1−αd

Term (A) can be simplified as follows:

(A) =
1

Md
∑

b∈Md

 1
Kd(b)

∑
k∈Kd(b)

1
{

s∗d(b, k, σ) ∈ Mo
}

m̄d(b, k, σ)

 cd(b, σ)yd(b, σ)

t→∞−−→ E

 1
Kd(·) ∑

k∈Kd(·)

1
{

s∗d(·, k, σ) ∈ Mo
}

m̄d(·, k, σ)

 cd(·, σ)yd(·, σ)


= E

 1
Kd(·) ∑

k∈Kd(·)

1
{

s∗d(·, k, σ) ∈ Mo
}

m̄d(·, k, σ)

E [cd(·, σ)yd(·, σ)]
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= E

E

 1
Kd(·) ∑

k∈Kd(·)

1
{

s∗d(·, k, σ) ∈ Mo
}

m̄d(·, k, σ)

 | Kd

E [cd(·, σ)yd(·, σ)]

= E

 1
Kd(·) ∑

k∈Kd(·)
E

[
1
{

s∗d(·, k, σ) ∈ Mo
}

m̄d(·, k, σ)
| Kd

]E [cd(·, σ)yd(·, σ)]

= E

 1
Kd(·) ∑

k∈Kd(·)
E

[
1
{

s∗d(·, ·, σ) ∈ Mo
}

m̄d(·, ·, σ)

]E [cd(·, σ)yd(·, σ)]

= E

[
1
{

s∗d(·, ·, σ) ∈ Mo
}

m̄d(·, ·, σ)

]
E [cd(·, σ)yd(·, σ)]

= E

[
1

m̄d(·, ·, σ)

]
E [1 {s∗d(·, ·, σ) ∈ Mo}]E [cd(·, σ)yd(·, σ)]

=
ζ

ζ + 1
πod (•,−, σ0)E [cd(·, σ)yd(·, σ)]

Term (B) can be simplified as follows:

(B) =
1

Md
∑

b∈Md

cd(b, σ)yd(b, σ)

t→∞−−→ E [cd(·, σ)yd(·, σ)]

Substituting (A) and (B) back in the Intermediate Input Demand,we obtain:

Intermediate Input Demand = ∑
d

αd
ζ

ζ + 1
πod (•,−, σ0)

wd(σ)Ld
1− αd

We can simplify term (3) as follows:

Final Consumption Demand = ∑
d

∑
i∈Ld

 1
Nd(i)

∑
n∈Nd(i)

1
{

s∗d(i, n, σ) ∈ Mo
}

m̄d(i, n, σ1)

 (wd(σ) + Πd(σ))

= ∑
d

 1
Ld

∑
i∈Ld

 1
Nd(i)

∑
n∈Nd(i)

1
{

s∗d(i, n, σ) ∈ Mo
}

m̄d(i, n, σ1)

 (wd(σ) + Πd(σ)) Ld

t→∞−−→∑
d

E

 1
Nd(·) ∑

n∈Nd(·)

1
{

s∗d(·, n, σ) ∈ Mo
}

m̄d(·, n, σ)

 (wd(σ) + Πd(σ)) Ld

= ∑
d

E

E

 1
Nd(·) ∑

n∈Nd(·)

1
{

s∗d(·, n, σ) ∈ Mo
}

m̄d(·, n, σ)
| Nd

 (wd(σ) + Πd(σ)) Ld
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= ∑
d

E

 1
Nd(·) ∑

n∈Nd(·)
E

[
1
{

s∗d(·, n, σ) ∈ Mo
}

m̄d(·, n, σ)
| Nd

] (wd(σ) + Πd(σ)) Ld

= ∑
d

E

 1
Nd(·) ∑

n∈Nd(·)
E

[
1
{

s∗d(·, ·, σ) ∈ Mo
}

m̄d(·, ·, σ)

] (wd(σ) + Πd(σ)) Ld

= ∑
d

E

[
1
{

s∗d(·, ·, σ) ∈ Mo
}

m̄d(·, ·, σ)

]
(wd(σ) + Πd(σ)) Ld

= ∑
d

E

[
1

m̄d(·, ·, σ)

]
E [1 {s∗d(·, ·, σ) ∈ Mo}] (wd(σ) + Πd(σ)) Ld

= ∑
d

ζ

ζ + 1
πod (•,−, σ0) (wd(σ) + Πd(σ)) Ld

Also, note that Πd(σ)Ld =
(

ζ+1
ζ − 1

)
∑b∈Md

cd(b, σ)yd(b, σ) = 1
ζ

wd(σ)Ld
1−αd

. Putting these to-
gether we can further simplify the goods market clearing condition to obtain the desired result
as follows:

wo(σ)Lo

1− αo
=

ζ

ζ + 1 ∑
d

πod(•,−, σ0)

(
αd

1− αd
+ 1 +

1
ζ(1− αd)

)
wd(σ)Ld

= ∑
d

πod(•,−, σ0)
wd(σ)Ld
1− αd

=⇒ wo(σ)Lo

1− αo
= ∑

d
πod(•,−, σ0)

wd(σ)Ld
1− αd

Since {wd(σ)}d solves the above system of equations for a given realization of σ0, irrespec-
tive of the realization of σ1, we conclude that wd(σ) = wd (σ0). That is, {wd : d ∈ J } solves the
following system of equations for given realization of σ0, irrespective to realization of σ1.

woLo

1− αo
= ∑

d
πod(•,−)

wdLd
1− αd

C Empirical Framework: Appendix

C.1 Proof of Proposition 7

In our context, the multinomial random variable counts the number of successes in each of
the M categories (one for each other supplier s), after Kd(b) independent trials (one for each
task associated with b). Let π0

od(s, b) denote the probability of success and Kod(s, b) denote the
number of successes in category s, the probability of observing {Kod(s, b) : s ∈ Mo, o ∈ J } con-
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ditional on the number of tasks Kd(b) is:

P ({Kod(s, b) : s ∈ Mo, o ∈ J } | Kd(b)) = Kd(b)! ∏
o∈J

∏
s∈Mo

(
π0

od(s, b)
)Kod(s,b)

Kod(s, b)!

where ∑o∈J ∑s∈Mo π0
od(s, b) = 1 and ∑o∈J ∑s∈Mo Kod(s, b) = Kd(b). From assumption 2, the

unconditional probability is given by:

P ({Kod(s, b) : s ∈ Mo, o ∈ J }) =

Kd(b)! ∏
o∈J

∏
s∈Mo

(
π0

od(s, b)
)Kod(s,b)

Kod(s, b)!

× e−κdκ
Kd(b)
d

(1− e−κd)Kd(b)!

=
e−κd

1− e−κd

∏
o∈J

∏
s∈Mo

(
κdπ0

od(s, b)
)Kod(s,b)

Kod(s, b)!


The likelihood for the complete sample, K ≡ {Kod(s, b) : (s, b) ∈ Mo ×Md, (o, d) ∈ J × J }

with probabilities Π0 ≡
{

π0
od(s, b) : (s, b) ∈ Mo ×Md, (o, d) ∈ J ×J

}
is:

`
(

K | Π0
)
= ∏

d∈J
∏

b∈Md

 1
1− e−κd

∏
o∈J

∏
s∈Mo

e−κdπ0
od(s,b) (κdπ0

od(s, b)
)Kod(s,b)

Kod(s, b)!

 1
Kd(b)

Therefore, the log-likelihood is proportional to:35

L
(

K | Π0
)

∝ ∑
o∈J

∑
s∈Mo

(
∑

d∈J
∑

b∈Md

πod(s, b)

)
ln
(

co(s)−ζτ
−ζ
od

)

35Note that:

Kod(s, b)
Kd(b)

=
∑k∈Kd(b) 1

{
s = s∗d(b, k)

}
Kd(b)

= ∑
k∈Kd(b)

1 {s = s∗d(b, k)}
(

1
Kd(b)

)

= ∑
k∈Kd(b)

1 {s = s∗d(b, k)}
(

Xd(b, k)
Xd(b)

)

=

(
∑k∈Kd(b) 1

{
s = s∗d(b, k)

}
Xd(b, k)

Xd(b)

)

=
Xod(s, b)

Xd(b)
= πod(s, b)
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− ∑
d∈J

Md ln

(
∑

s′∈M
co′(s′)−ζτ

−ζ
o′d

)

+ ∑
d

(
∑

b∈Md

1
Kd(b)

)
ln
(

e−κd

1− e−κd

)
+ ∑

d
Md ln κd

Under Assumption 7, note that co(s) = c̃o(s)co and ∑s′∈M co′(s′)−ζτ
−ζ
o′d = ∑o′ c

−ζ
o′ τ

−ζ
o′d , there-

fore the likelihood equations for c̃o(s) are given by:

∑d ∑b∈Md
πod(s, b)

c̃o(s)−ζc−ζ
o

= ∑
d

Md

∑o′ c
−ζ
o′ τ

−ζ
o′d

τ
−ζ
od

The likelihood equations for τ
−ζ
od are given by:(

∑b∈Md ∑s∈Mo πod(s, b)
)

τ
−ζ
od

=
Md

∑o′ c
−ζ
o′ τ

−ζ
o′d

(
∑
s∈o

co(s)−ζ

)

=
Md

∑o′ c
−ζ
o′ τ

−ζ
o′d

c−ζ
o

=⇒ τ
−ζ
od =

(
∑b∈Md ∑s∈Mo πod(s, b)

)
Md

∑o′ c−ζ

o′ τ
−ζ

o′d
c−ζ

o

=

(
∑b∈Md

πod(•, b)
)

Md

∑o′ c−ζ

o′ τ
−ζ

o′d
c−ζ

o

Substituting the expression for τ
−ζ
od , we obtain an estimator for c̃o(s)−ζ as:

c̃o(s)−ζ =
∑b∈M πod(s, b)
∑b∈M πod(•, b)

=
∑d πod(s, •)

∑s′∈Mo ∑d πod(s′, •)

This then provides us with an estimator for c−ζ
o τ

−ζ
od

∑o′ c−ζ

o′ τ
−ζ

o′d
as follows:

τ
−ζ
od =

(
∑b∈Md ∑s∈Mo πod(s, b)

)
Md

∑o′ c−ζ

o′ τ
−ζ

o′d
c−ζ

o

=⇒
c−ζ

o τ
−ζ
od

∑o′ c
−ζ
o′ τ

−ζ
o′d

=
∑b∈Md ∑s∈Mo πod(s, b)

Md
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=
1

Md
∑

b∈Md

πod(•, b)

C.2 Construction of district-level {(VA/GO)o : o ∈ J }

I obtain district-level sectoral GDP
{

VAj
o

}
from Nielsen Analytics, a private data firm and

industry-level data on value-added share of gross output at the national level,
{
(VA/GO)j : j ∈ I

}
from the World Input-Output Database. Using these, I construct a measure of value-added share
of gross output at the district level as

(VA/GO)o =
∑j∈I VAj

o

∑j∈I
VAj

o
(VA/GO)j

. (C.1)

I use data pertaining to six industry groups for this calculation. They are (a) Mining and
Quarrying; (b) Construction; (c) Manufacturing; (d) Electricity, Gas and Water Supply; (e) Trans-
port, Storage and Communication; and (f) Trade, Hotels and Restaurants.

C.3 Expected Utility & Welfare Changes

Households residing at location d are heterogeneous both in their numbers of needs and
match-specific taste shocks of using different suppliers’ goods to fulfill their needs. Welfare at
any location is then calculated in expectation. That is, Vd = E [Vd (·)]. With Cobb-Douglas
utilities across needs from Assumption 5, indirect utility of household i residing at d is given by:

Vd(i) =
wd (1 + 1/ζ(1−αo))

∏
Nd(i)
n=1 pd(i, n)1/Nd(i)

Expected indirect utility of households at location d can then be derived as:

Vd = E [Vd (·)]

= E

[
wd (1 + 1/ζ(1−αo))

Nd(·)

∏
n=1

pd(·, n)−1/Nd(·)

]

= wd (1 + 1/ζ(1−αo))E

[
E

[
Nd(·)

∏
n=1

pd(·, n)−1/Nd(·) | Nd

]]

= wd (1 + 1/ζ(1−αo))E

[
Nd(·)

∏
n=1

E
[

pd(·, ·)−
1/Nd(·) | Nd

]]
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= wd (1 + 1/ζ(1−αo))E

[
Nd(·)

∏
n=1

Γ
(

2− 1
ζNd (·)

)
A

1
ζNd(·)
d

]

= (1 + 1/ζ(1−αo))E{Nd}

[
Γ
(

2− 1
ζNd

)Nd
]

wd A
1
ζ

d

Welfare changes, i.e., changes in expected indirect utility at location d in response to shocks
can be calculated as:

V̂d = ŵd Â1/ζ

d ,

where ŵd denotes the change in wage and Âd denotes change in market access at d.

C.4 Procedure for Computing Counterfactual Outcomes

Counterfactual analysis is conducted in three steps. First, I evaluate the expected value of
aggregate and firm-level outcomes in the initial state. Second, I compute changes in aggregate
outcomes that result from the counterfactual shock. Finally, I evaluate the expected value of
aggregate and firm-level outcomes in the counterfactual state

Step 1: Compute expected value of aggregate and firm-level outcomes in initial state In the
initial state, wL ≡ {wdLd : d ∈ J } is obtained as the solution to the following system of equa-
tions:

wdLd
1− αd

= ∑
d

π∗od(•,−)
woLo

1− αo
,

where π∗od (•,−) is calculated as in equation (4.7). Using the solution to these equations, value-
added and gross output for each district are respectively calculated as:

VAd = wdLd

(
(VA/GO)d

(VA/GO)d − 1/ζ+1

)
,

GOd = wdLd

(
1

(VA/GO)d − 1/ζ+1

)
,

where (VA/GO)d for district d is calculated in equation (C.1). Total value-added across all districts
is chosen as the numeraire, i.e., ∑d VAd = 1. At the firm-level, input sales, total sales, intensity
of use, and average customer size are respectively calculated as:

input saleso(s) = ∑
d

π∗od(s,−) (GOd −VAd) ,
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total saleso(s) = ∑
d

π∗od(s,−)GOd,

intensity of useo(s) = ∑
d

π∗od(s,−)Md,

average customer sizeo(s) =
input saleso(s)

intensity of useo(s)
,

where π∗od(s,−) is calculated as in equation (4.6).

Step 2: Evaluate change in aggregate outcomes from initial to counterfactual state For any
change in σ0, δ̂ ≡

{
δ̂od : (o, d) ∈ J ×J

}
, one can solve for change in wages ŵ ≡ {ŵd : d ∈ J }

with the following tâtonnement algorithm for some positive constant µ and tolerance value tol:

1. Start with a guess for the vector of change in wages, ŵ(0)

2. For the vector of wage changes, in the tth iteration ŵ(t), compute change in market access
as the solution to the following system of equations:

Â(t)
d = ∑

o
πod(•,−)δ̂od

(
ŵ(t)

o

)−ζ(1−αo) (
Â(t)

o

)αo

3. Compute counterfactual sourcing probabilities as:

(
π
(t)
od (•,−)

)′
= πod(•,−)

δ̂od

(
ŵ(t)

o

)−ζ(1−αo) (
Â(t)

o

)αo

Â(t)
d

4. Compute excess demand for labor Z
(

ŵ(t)
)
≡
{

Zo

(
ŵ(t)

)
: o ∈ J

}
as:

Zo

(
ŵ(t)

)
=

1− αo

woLo
∑
d

(
π
(t)
od (•,−)

)′
ŵ(t)

d
wdLd

1− αd
− ŵo

5. Update the vector of change in wages as ŵ(t+1) ← ŵ(t) + µZ
(

ŵ(t)
)

.

6. If ‖ŵ(t+1) − ŵ(t)‖ > tol, go back to (2), else end.

Welfare changes can then be computed as V̂d = ŵ(∞)
d

(
Â(∞)

d

) 1
ζ .

Step 3: Compute expected value of aggregate and firm-level outcomes in counterfactual state
As in the initial state, here again VA′d and GO′d are computed for each district using (wL)′ instead
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of wL.

VA′d = ŵ(∞)
d wdLd

(
(VA/GO)d

(VA/GO)d − 1/ζ+1

)
,

GO′d = ŵ(∞)
d wdLd

(
1

(VA/GO)d − 1/ζ+1

)
.

Firm-level outcomes are then calculated by using π
(∞)
od (•,−) instead of π∗od (•,−) as follows:

(input saleso(s))
′ = ∑

d
π
(∞)
od (s,−)

(
GO′d −VA′d

)
,

(total saleso(s))
′ = ∑

d
π
(∞)
od (s,−)GO′d,

(intensity of useo(s))
′ =

(
∑
d

π
(∞)
od (s,−)Md

)
,

(average customer sizeo(s))
′ =

(input saleso(s))
′

(intensity of useo(s))
′ ,

where π
(∞)
od (s,−) =

(c̃o(s)−ζ)
∗
δ̂od(s)

∑s′∈Mo(c̃o(s′)−ζ)
∗
δ̂od(s′)

π
(∞)
od (•,−) and δ̂od(s) is the firm-level shock from the

change in σ0.

D Estimation Results: Appendix

For each district, Figure D.1 presents estimates of material share of costs across districts. For
each district–year pair, Figure D.2 presents estimates of shape parameters of Fréchet distribution
of productivities and Figure D.3 presents estimates of task intensities of zero-truncated Poisson
distribution of numbers of tasks.
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Figure D.1: Estimates of Material Shares α
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Note. The left panel is a histogram of estimated material share of costs across districts. The right panel is a box
and whiskers plot of estimated material share of costs across districts within each state. States are arranged by
economic size in descending order.

Figure D.2: Estimates of Productivity Dispersion θ
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Note. The left panel is a stacked histogram of estimated shape parameter of Fréchet distributions of firms’ produc-
tivities, across districts (from Assumption (1)). The right panel is a box and whiskers plot of the estimated shape
parameters across district–year pairs within each state. States are arranged by economic size in descending order.
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Figure D.3: Estimates of Task Intensities κ
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Note. The left panel is a stacked histogram of estimated task intensities of zero-truncated Poisson distributions
of firms’ numbers of tasks, across districts (from Assumption (2)). The right panel is a box and whiskers plot of
the estimated task intensities across district–year pairs within each state. States are arranged by economic size in
descending order.
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