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Abstract

We study the role and drivers of persistence in the extensive margin of bilateral

trade. Motivated by a stylized heterogeneous firms model of international trade

with market entry costs, we consider three-way fixed effects binary choice models

and study the corresponding incidental parameter problem. The standard maximum

likelihood estimator is consistent under asymptotics where all panel dimensions

grow at a constant rate, but it has an asymptotic bias in its limiting distribution,

invalidating inference even in situations where the bias appears to be small. Thus,

we propose two different bias-corrected estimators. Monte Carlo simulations confirm

their desirable statistical properties. A reassessment of the most commonly studied

determinants of the extensive margin of trade demonstrates that both true state

dependence and unobserved heterogeneity contribute strongly to trade persistence

and that taking this persistence into account matters significantly in identifying the

effects of trade policies on the extensive margin.
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1 Introduction

What induces country pairs to trade? In 2015, still more than one quarter of potential

bilateral trade relations reported zero trade flows.1 Comparing these zero trade flows

with trade relations in 2014, these zeros turn out to be extremely persistent: 84.6

percent of country pairs that did not trade in 2014 did not trade in 2015 either, as can

be seen in the transition matrix depicted in Table 1. And similarly, 94.4 percent of pairs

that did trade in 2014 continued to do so in the year after.2

Table 1: Persistence in Bilateral Trade Relations (2014 – 2015)

Traded in 2015
Traded in 2014 No Yes

No 84.6 % 15.4 %
Yes 5.6 % 94.4 %

Both intuitively and based on existing theoretical and empirical insights, we would

expect geographically close and economically large country pairs to have the greater

bilateral trade potential and thus be more likely to engage in international trade. As

distance is time-invariant and economic size does not change abruptly from one year to

another, these gravity-like characteristics may explain (part of) the observed persistence.

Figure 1 breaks down the share of nonzero trade flows in 2015 along the percentiles of

four different ad-hoc indicators of trade potential: bilateral distance; product of GDPs;

“naive” gravity, i.e. the product of GDPs divided by the countries’ bilateral distance; and

the latter when excluding country pairs in FTAs, with common currencies or common

colonial history. The x-axis indicates the potential trade volume, i.e. the joint economic

size and/or proximity of any two countries. All four plots paint a common picture:

the black dots, covering all country pairs, show a strong general relationship between

trade potential and actual nonzero trade. The blue and red dots split the country pairs

according to whether the two did or did not engage in trade in the previous year. The

clearly separated pattern for the two groups highlights the remarkable persistence of

trade relations, even after controlling for differences in trade potential in terms of

distance, size, and bilateral trade policy. More than 50 percent of those country pairs in

the lowest percentile of trade potential trade again in 2015, provided they already did

so in 2014. On the other hand, even comparably large and close pairs are likely not to

trade in 2015 if they did not trade in 2014 either.3

1According to data from UN Comtrade.
2Note that throughout the paper, “country pair” refers to a directed pair of countries, i.e. Germany-

France and France-Germany are two distinct country pairs.
3A very similar pattern emerges for other points in time (see Figure A1 in Appendix A where the same

graph is reproduced for the years 1990–1991). If longer time intervals are considered, a similar picture
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Figure 1: Determinants of the Extensive Margin of Trade — Gravity and Persistence.
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Note: Trade data for 2014 – 2015 come from UN Comtrade, GDP, distances and gravity variables are
sourced from CEPII (Head and Mayer, 2014).

Two potential features of the extensive margin of trade that can generate the pattern

documented by Table 1 and Figure 1 are what Heckman (1981) termed “true state

dependence” — i.e. countries actually are more likely to trade because they did so in

the previous period — and unobserved bilateral heterogeneity — i.e. persistence is due

to unobservable factors continuously driving bilateral trade potential — denoted as

“spurious state dependence” by Heckman (1981). In this paper we introduce estimators

remains, but the relationship becomes considerably weaker (see Figure A2 in Appendix A for the years
1997–2006).
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for the determinants of the extensive margin of international trade that explicitly take

its persistence due to observable characteristics, true state dependence, and unobserved

heterogeneity into account. We introduce features from the firm dynamics literature into

a heterogeneous firms model of international trade with bounded productivity to derive

expressions for an exporting country’s participation in a specific destination market in

a given period. These expressions depend on partly unobserved (i) exporter-time, (ii)

destination-time, and (iii) exporter-destination specific components, as well as on (iv)

whether the exporter has already served the market in the previous period, and on (v)

exporter-destination-time specific gravity-type trade cost determinants. We estimate the

model making use of recent computational advances in the estimation of binary choice

estimators with high-dimensional fixed effects to address (i)-(iii). The inclusion of fixed

effects in a binary choice setting induces an incidental parameter problem that is poten-

tially aggravated by the dynamics introduced by (iv). To mitigate this bias, we propose

and implement new analytically and jackknife bias-corrected estimators for coefficients

and average partial effects in three-way fixed effects specifications. Additionally, we

provide an expression for long-run partial effects. Extensive simulation experiments

demonstrate the desirable statistical properties of our proposed bias-corrected esti-

mators. The empirical application provides evidence that both unobserved bilateral

factors and true state dependence due to entry dynamics contribute strongly to the high

persistence. Taking this persistence into account changes the estimated effects of the

most commonly studied potential determinants considerably: The impact of a common

currency is reduced from about 10 percentage points to less than 4 percentage points,

the impact of joint membership in the WTO decreases from 2.6 percentage points to 0.7

percentage points, and a common regional trade agreement loses statistical significance.

Specifications with a lagged dependent variable and/or bilateral fixed effects further

yield better predictions for which country pairs will trade than specifications that fail to

account for state dependence appropriately.

Our paper builds on recent insights from three flourishing strands of literature. First,

our paper is related to the literature on the extensive margin of international trade.

A number of theoretical frameworks have sought to propose mechanisms behind the

decisions of firms to export, and their aggregate implications of zero or nonzero trade

flows at the country pair level. Analogous to the intensive margin counterpart, these

theories have established gravity-like determinants, such as two countries’ bilateral

distance, a free trade agreement, a common currency and joint membership in the WTO.

Egger and Larch (2011) and Egger, Larch, Staub, and Winkelmann (2011) append an

extensive margin to an Anderson and Wincoop (2003)-type model by assuming export

participation to be determined by (homogeneous) firms weighing operating profits and

3



bilateral fixed costs of exporting. Helpman, Melitz, and Rubinstein (2008) build a model

of international trade with heterogeneous firms and bounded productivity in which a

country only exports to a given destination if the most productive firm can afford to

overcome the fixed costs of exporting. Eaton, Kortum, and Sotelo (2013) move away

from the arguably simplifying notion of a continuum of firms and develop a model

of a finite set of heterogeneous firms. Here, no firm may export to a given market

because of their individual efficiency draws. Our model proposed in this paper directly

builds on Helpman, Melitz, and Rubinstein (2008) and extends it by features from

the literature on firm dynamics. In this firm-level literature, Das, Roberts, and Tybout

(2007) develop a dynamic discrete-choice model in which current export participation

depends on previous exporting, and hence sunk costs, and observable characteristics of

profits from exporting (in line with previous empirical evidence by Roberts and Tybout,

1997; Bernard and Jensen, 2004). Alessandria and Choi (2007) embed the distinction

between sunk costs and “period-by-period” fixed costs into general equilibrium.4 We aim

at reconciling the estimation of the aggregate extensive margin with the insight from

the firm-level literature that dynamics feature prominently in the determination of the

exporting decision by deriving an econometric specification that explicitly incorporates

previous export experience at the country pair level.

Second, our paper builds on advances in the literature on the gravity equation and

the intensive margin of international trade. With the advent of what has now been

coined structural gravity (Head and Mayer, 2014), the gravity framework has gained

rich microfoundations. Anderson and Wincoop (2003) and Eaton and Kortum (2002)

each formulate an underlying structure for exporting and importing countries that in

estimations can easily be captured by appropriate two-way country(-time) fixed effects,

as first noted by Feenstra (2004) and Redding and Venables (2004). Since Baier and

Bergstrand (2007), it has furthermore become standard to include country pair fixed

effects to tackle unobservable bilateral trade cost determinants. Additionally taking into

account the multiplicative structure of the gravity equation following Santos Silva and

Tenreyro (2006), nonlinear estimation with exporter-time, importer-time, and country

pair fixed effects has become the gold standard for the intensive margin. Estimating the

model introduced in this paper similarly calls for three sets of fixed effects, specific to

exporters and importers in a given year, as well as to a given country pair over time.

The binary nature of the decision whether to export to a destination market at all, also

clearly asks for a nonlinear estimator. Therefore, in this paper, we put the estimation of

4A number of recent contributions also stress the dynamic character of firms’ exporting behaviour
and additionally provide alternative rationales for dynamic feedbacks beyond sunk costs of entry, such
as “demand learning” or consumer accumulation (see e.g. Bernard, Bøler, Massari, Reyes, and Taglioni,
2017; Ruhl and Willis, 2017; Berman, Rebeyrol, and Vicard, 2019; Piveteau, 2019).
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the extensive margin on a par with the intensive margin gold standard by introducing a

respective three-way fixed effects binary choice specification.

Third, the paper builds on and contributes to the literature on estimating nonlinear

fixed effects models. As it is known since Neyman and Scott (1948), the inclusion of

fixed effects potentially introduces an incidental parameter problem (IPP). Although the

maximum likelihood estimator (MLE) is consistent if all dimensions of the panel grow

large, it has an asymptotic bias in its limiting distribution leading to invalid inference

(see Fernández-Val and Weidner, 2018). Recently, there have been a number of advances

to deal with the IPP (see Fernández-Val and Weidner, 2018, for a recent overview).

In the context of the aggregate extensive margin, only approaches for cross-sectional
bilateral data with importer (j) and exporter (i) fixed effects have been suggested. Cruz-

Gonzalez, Fernández-Val, and Weidner (2017) apply the bias correction of Fernández-Val

and Weidner (2016)5, and Charbonneau (2017) proposes a conditional logit estimator.

Many trade data sets however consist of bilateral cross-sections over time, i.e. network

panel data. The theory-consistent estimation of our model includes fixed effects for

exporter-time (it) and importer-time (jt). On closer inspection, one finds that this

two-way case can basically be covered by the bias corrections of Fernández-Val and

Weidner (2016) for individual and time fixed effects.6 However the literature lacks a

suitable method to estimate our preferred specification, which additionally includes a

third, bilateral (ij), set of fixed effects. Our contribution is to develop suitable three-way

fixed effects binary choice estimators for network panel data. Therefore, our article

complements the work of Weidner and Zylkin (2020) on estimating the intensive margin

of trade, who examine the IPP in three-way pseudo-poisson (PPML) models under fixed

T asymptotics and suggest appropriate bias corrections.

The remainder of the paper is structured as follows. In Section 2 we build a dynamic

model of the extensive margin of international trade. The model yields aggregate

predictions that can be structurally estimated using a probit model with high-dimensional

fixed effects. In Section 3 we describe the new bias-corrected three-way fixed effects

estimator. We demonstrate its performance in Monte Carlo simulations in Section 4,

before finally showing the estimator in action by estimating the model in Section 5.

Section 6 concludes.
5The bias corrections of Fernández-Val and Weidner (2016) were originally developed for classical

panel data models with individual and time fixed effects and cover a wide range of nonlinear models.
6Similarly, it is possible to adapt the estimator of Charbonneau (2017) to the setting with exporter-time

(it) and importer-time (jt) fixed effects. However, her approach has some limitations: 1. it is limited to
logit models, 2. it precludes the possibility to estimate average partial effects, 3. it is computationally
infeasible in cases where the number of levels per fixed effects becomes large.
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2 An Empirical Model of the Extensive Margin of Trade

We start by setting up a model of the extensive margin of trade that will later guide

our econometric specification. We consider a stylized dynamic Melitz (2003)-type

heterogeneous firms model of international trade. Following Helpman, Melitz, and

Rubinstein (2008, henceforth HMR) we assume a bounded productivity distribution,

like a truncated Pareto in HMR’s case. We deviate from HMR by explicitly stating a time

dimension and, unlike in the standard Melitz setting, separate fixed exporting costs into

costs of entering a new market and costs of selling in a given market (as in Alessandria

and Choi, 2007; Das, Roberts, and Tybout, 2007).

There are N countries, indexed by i and j, each of which consumes and produces a

continuum of products. The representative consumer in j receives utility according to a

CES utility function:

ujt =

(∫
ω∈Ωjt

(ξijt)
1
σ qjt(ω)

σ−1
σ dω

) σ
σ−1

with σ > 1. (1)

where qjt(ω) is j’s consumption of product ω in period t, Ωjt is the set of products

available in j, σ is the elasticity of substitution across products, and ξijt is a log-normally

distributed idiosyncratic demand shock (with µξ = 0 and σξ = 1) for goods from country

i in country j and period t (similar to Eaton, Kortum, and Kramarz, 2011). Demand in

country j for good ω depends on this demand shock, j’s overall expenditure Ejt, and the

good price pjt(ω) relative to the overall price level as captured by the price index Pjt:

qjt(ω) =
pjt(ω)−σ

P 1−σ
jt

ξijtEjt.

with Pjt =

(∫
ω∈Ωjt

ξijtpjt(ω)1−σdω

) 1
1−σ

.

Each country has a fixed continuum of potentially active firms that have different

productivities drawn from the distribution Git(ϕ), where ϕ ∈ (0, ϕ∗it]. The productivity

distribution evolves over time and firms’ ranks within the productivity distribution can

also change from period to period, though firms that in the last period did not export to

a market already served by a domestic competitor are assumed not to directly jump to

being the country’s most productive firm in the next period.7 Each period, a firm can

7Note that we could in principle also allow for new firm entry into the pool of potential producers
without changing our final expression for the extensive margin as long as the new entrants cannot become
the country’s most productive firm right away.
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decide to pay a fixed cost fprodit and start production of a differentiated variety using

labour l as its only input, such that lt(ω) = fprodit + qt(ω)/ϕt(ω). A firm’s marginal cost of

providing one unit of its good to market j consists of iceberg trade costs τijt and labour

costs wit/ϕt(ω). Firms compete with each other in monopolistic competition and charge

a constant markup over marginal costs. Therefore, the price of a good ω produced in i

and sold in j is:

pijt(ω) =
σ

σ − 1

τijtwit
ϕt(ω)

.

A firm’s operating profits in market j are hence given by:

π̃ijt(ω) =
1

σ

(
σ

σ − 1

τijtwit
ϕt(ω)

)1−σ

P σ−1
jt ξijtEjt.

If a firm wants to export to a market j in period t, it has to pay a fixed exporting cost

f expijt . The exporting fixed cost is higher by a market entry cost factor f entry ≥ 1 if the

firm has not been active in the respective market in the previous period. For tractability,

the entry cost factor is assumed to be constant across countries and time. Capturing the

export decision by a binary variable yijt(ω), i.e. equal to one if the firm decides to serve

market j in period t, we can formalize a firm’s realized profits in market j as follows:

πijt(ω) = yijt(ω)
{
π̃ijt(ω)− f expijt (f entry)[1−yij(t−1)(ω)]

}
.

In the absence of entry costs, a firm would simply compare its operating profits to the

fixed exporting cost and decide to serve a market if the former are greater than the latter.

With market entry costs, a firm might be willing to incur a loss in the current period if

expected future profits from that same market outweigh the initial loss. Firms discount

future profits at a rate δ per period. To keep things tractable and allow us to derive a

theory-consistent estimation expression below, we assume that firms expect their future

operating profits from and fixed costs of serving a given market to be equal to today’s

values, i.e. Et[π̃ij(t+s)] = π̃ijt and Et[f expij(t+s)] = f expijt ∀s ∈ N.8 The current value of today’s

and all future operating profits from market j is then given by
∑∞

s=0(1− δ)sπ̃ijt =
π̃ijt
δ

. A

firm will decide to serve a destination market if these discounted expected profits exceed

the sum of today’s and discounted future fixed costs of entry and exporting, given by

8Note that our final expression for the extensive margin also holds if firms instead expect their operating
profits from serving an export market to grow at a constant rate ḡ < δ.
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f expijt (f entry)(1−yij(t−1)(ω)) +
∞∑
s=1

(1− δ)sf expijt =
f expijt

δ

(
1 + δ(f entry − 1)

)(1−yij(t−1)(ω))
.

Given this model setup, the question whether a country exports to another country at
all can be considered by looking at the most productive firm (with ϕ∗t ) only. Denoting

that firm’s product by ω∗, we can capture the aggregate extensive margin by the binary

variable yijt as follows:

yijt = yijt(ω
∗) =

1 if

(
1
σ

(
σ
σ−1

τijtwit
ϕ∗
it

)1−σ
Pσ−1
jt ξijtEjt

)
fexpijt (1+δ(fentry−1))

(1−yij(t−1))
≥ 1,

0 else.

(2)

Country i is hence more likely to export to country j in period t if (i) bilateral variable

trade costs are lower; (ii) wages in i, and hence production costs, are lower; (iii) the

productivity of the most productive firm is higher, again reducing production costs; (iv)

competitive pressure, inversely captured by the price index, in j is lower, corresponding

to the idea of inward multilateral resistance coined by Anderson and Wincoop (2003) in

the intensive margin context; (v) the market in j is larger; (vi) bilateral fixed costs of

exporting are smaller; or (vii) i’s most productive firm already served market j in the

previous period and therefore does not have to pay the market entry cost. Note that (i)

to (iv) all act via higher operating profits and depend on the elasticity of substitution

between goods. The higher this elasticity, the stronger the reaction of profits to changes

in any of these factors. At the same time, a higher elasticity reduces the mark-up firms

can charge and hence makes it generally harder to earn enough profits to mitigate the

fixed costs of exporting. Further note that the importance of the entry costs depends

on the discount factor. Intuitively, if agents are more patient, the one-time entry costs

matter less compared to the repeatedly earned profits. Empirically, (vii) induces true

state dependence. As previous exporters do not have to incur entry costs, they are

more likely to stay active in the destination market and the extensive margin becomes

more persistent than would be implied merely by the persistence of productivity, market

potential, and trade costs.

In order to turn equation (2) into the empirical expression that we will bring to the data,

we take the natural logarithm and group all exporter-time and importer-time specific

components and capture them with corresponding sets of fixed effects. Further, we need

to specify the fixed and variable trade costs. In keeping with the existing literature, we

model them as a linear combination of different observable bilateral variables, such as

8



geographic distance, whether i and j are both WTO members, and whether i and j share

a common currency. In our most general specification, we additionally include country

pair fixed effects. Following Baier and Bergstrand (2007), this is common practice in

the estimation of the determinants of the intensive margin of trade in order to avoid

endogeneity due to unobserved heterogeneity. Further, these bilateral fixed effects may

capture (part of) the strong persistence documented above.9 Note, however, that the

nature of the persistence captured by these fixed effects is different from the one that is

due to the entry dynamics. This additional state dependence is “spurious” in the sense

that countries are not actually more likely to export to a destination because of the prior

experience, but because they keep incorporating the same unobserved factors over time.

With the three sets of fixed effects and our parametrization for time-varying trade cost

determinants, we arrive at the following econometric model:

yijt =

1 if κ+ λit + ψjt + βyyij(t−1) + x′ijtβx + µij ≥ ζijt,

0 else,
(3)

where κ = −σ log(σ)− (1−σ) log(σ− 1)− log(1 + δ(f entry− 1)), λit = (1−σ)(log(wit)−
log(ϕ∗it)), ψjt = (σ − 1) log(Pjt) + log(Ejt), βy = log(1 + δ(f entry − 1)), x′ijtβx + µij =

(1− σ) log(τijt)− log(f expijt ), and ζijt = − log(ξijt) ∼ N (0, 1). The error term distribution

implies that a probit estimator is the appropriate choice to estimate our model. Al-

ternatively, we could deviate from Eaton, Kortum, and Kramarz (2011) and assume a

log-logistic distribution for the idiosyncratic demand shocks, which would lead to a logit

specification. As mentioned above, we capture the three sets of unobserved components

by introducing according sets of fixed effects. A supposed alternative using random

effects is actually not possible, at least for the it and jt effects, as they are implied by the

theoretical model. We therefore cannot make the distributional assumptions required

in a random effects setting. The theory is silent about the exact form of the bilateral

heterogeneity. We decide for a third set of fixed effects as the most general option in

order to avoid assumptions on its distribution or its correlation to observed factors.

Our theoretical framework implies a flexible empirical specification that can reconcile

the extensive margin estimation with the stylized fact presented in Section 1. Note that

we chose to make a number of simplifying assumptions in order to achieve the clear

theory-consistent interpretation of specification (3). An alternative interpretation of

equation (3) as a reduced-from representation of a more elaborate and realistic model

(similar e.g. to how Roberts and Tybout, 1997, motivate their empirical consideration)

9If the trade costs further include any exporter(-time) or importer(-time) specific components, these
are captured by the aforementioned corresponding sets of fixed effects.
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is equally justifiable. At the same time, while our model is written along the lines

of Helpman, Melitz, and Rubinstein (2008), which remains the benchmark for the

empirical assessment of the (aggregate) extensive margin of trade, it is not decisive for

our empirical specification that zero trade flows result from a truncated productivity

distribution instead of a discrete number of firms (as in Eaton, Kortum, and Sotelo,

2013) or from fixed exporting costs in a Krugman (1980)-type homogeneous firms

setting (as in Egger and Larch, 2011; Egger, Larch, et al., 2011).

3 Binary Choice Estimators with Three-Way Fixed Effects

Having set up the empirical framework, we now turn to the estimation. As equation (3)

demands three-way fixed effects to capture unobservable characteristics, we describe

how to implement suitable binary choice estimators. In a first step, we review the

standard maximum likelihood estimator (MLE) for probit and logit models with fixed

effects. In a second step, we explain the consequences of the incidental parameter

problem on the MLE and characterize new bias corrections to address the induced

incidental parameter problem.

3.1 Model and Maximum Likelihood Estimation

Our empirical model can be written in a general way as the following three-way fixed

effects binary choice model:

yijt =

1 if x′ijtβ + µij + λit + ψjt ≥ ζijt,

0 else,
(4)

where i = 1, . . . , I, j = 1, . . . , J , t = 1, . . . , T , xijt is a p-dimensional vector of regres-

sors, β are the corresponding structural parameters, and ζijt is an idiosyncratic error

assumed to be logistic or normally distributed with mean zero. To allow xijt to con-

tain predetermined regressors, like yij(t−1), we impose the weak exogeneity condition

ζijt ⊥ (xtij, λit, ψjt, µij), with xtij := (xijt,xijt−1, . . . ,xij1).

A standard estimator for the parameters of interest β and the incidental parameters

α = (λ,µ,ψ) with µ = (µ11, . . . , µIJ), λ = (µ11, . . . , µIT ), and ψ = (ψ11, . . . , ψJT ) is the

following maximum likelihood estimator (MLE)
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θ̂ = (β̂I,J,T , α̂) = arg max
β∈Rp,α∈RIJ+IT+JT

I∑
i=1

J∑
j=1

T∑
t=1

`ijt(β, µij, λit, ψjt) (5)

where `ijt(β, µij, λit, ψjt) = yijt log(Fijt) + (1− yijt) log(1− Fijt) is the log-likelihood con-

tribution of the ijt-th observation, and Fijt denotes the cumulative distribution function

choosen for ζijt evaluated at the linear index ηijt = x′ijtβ + µij + λit + ψjt.

The brute-force estimation of equation (5) quickly becomes computationally demanding,

if not impossible due to the large number of parameters that need to be estimated.

For example, in a balanced data set (I = J = N), the number of parameters to be

estimated is ≈ N(N − 1) + 2NT . In a trade panel data set with 200 countries and 50

years, the number of fixed effects in this case amounts to 59,800 parameters. However,

recent developments in computational econometrics reduce this computational burden

by employing a straightforward strategy called pseudo-demeaning, which mimics the

well-known within transformation for linear regression models (see Stammann, 2018).

The parameters of the variables of interest can only be directly interpreted in terms of

their signs and relative magnitudes, but are not informative in themselves about the

absolute strength of the effects they represent. Another quantity of interest are therefore

the average partial effects:

δk =
1

IJT

I∑
i=1

J∑
j=1

T∑
t=1

∆k
ijt , (6)

where the partial effect of the k-th regressor ∆k
ijt is either ∆k

ijt = ∂Fijt/∂xijtk in the

case of a non-binary regressor or ∆k
ijt = Fijt|xijtk=1

− Fijt|xijtk=0
in the case of a binary

regressors. Here Fijt|xijtk=z indicates that all values of the k-th regressor are replaced

by z. In dynamic models, the simple average partial effect δk does not provide the full

picture of how the export probability is affected by a change in a regressor. Rather, there

are additional feedback effects.10 To derive expressions for long-run effects, we make

use of the long-run probability of yijt = 1 for a given set of regressors and fixed effects,

also mentioned in Carro (2003) and Browning and Carro (2010):

F̃ijt =
Fijt|yij(t−1)=0

1−∆y
ijt

, (7)

10In our context, the introduction of a permanent trade policy that increases the probability to export to
a destination implies that in the next period, entry costs are more likely to have already been paid, and
hence the impact becomes higher with increasing duration of the policy.
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where ∆y
ijt = Fijt|yij(t−1)=1

− Fijt|yij(t−1)=0
. Long-run average partial effects are then given

by

δLRk =
1

IJT

I∑
i=1

J∑
j=1

T∑
t=1

∆k,LR
ijt , with ∆k,LR

ijt =
∂F̃ijt
∂xijtk

or ∆k,LR
ijt = F̃ijt|xijtk=1

− F̃ijt|xijtk=0
,

(8)

in the case of non-binary or binary regressors, respectively. Estimators of (6) and (8)

can be formed by plugging in the MLE defined in (5).

3.2 Incidental Parameter Bias Correction

The MLE of many nonlinear fixed effects models – including binary choice models

– suffers from the well-known incidental parameter problem (IPP) first identified by

Neyman and Scott (1948). The problem stems from the necessity to estimate many

nuisance parameters, which contaminate the estimator of the structural parameters and

average partial effects. It can be further amplified by the inclusion of predetermined

regressors like a lagged dependent variable. This amplification can be interpreted as a

Nickell-type bias (Nickell, 1981). Although the MLE is consistent (under appropriate

asymptotics), it has an asymptotic bias in its limiting distribution leading to invalid

inference (see Fernández-Val and Weidner, 2018)). The literature suggests different

types of bias corrections to reduce these incidental parameter and Nickell-type biases

(Fernández-Val and Weidner, 2018, for an overview). Jackknife corrections, like the

leave-one-out jackknife proposed by Hahn and Newey (2004), or the split-panel jack-

knife (SPJ) introduced by Dhaene and Jochmans (2015), are the simplest approaches

to obtain a bias correction, at the expense of being computationally costly. In contrast

to analytical corrections, their application only requires knowledge of the order of the

bias components to form appropriate subpanels that are used to reestimate the model

and to form an estimator of the bias terms. For analytical bias correction (ABC), it is

necessary to derive the asymptotic distribution of the MLE, in order to obtain an explicit

expression of the asymptotic bias. This is then used to form a suitable estimator for the

bias terms.

The IPP affects all quantities of interest mentioned in the previous subsection, i.e.

β̂IJT , δ̂k, and δ̂LRk .11 Its become clear when looking at the asymptotic distribution of

the estimators. Under asymptotic sequences, where all panel dimensions grow at a

constant rate as I, J, T →∞, the MLE is consistent but asymptotically biased because its

11Note that we do not make a notational distinction between direct and long-run APEs in the following.
In all expressions for APEs, one can move between the direct and long-run case by substituting ∆LR

ijt for
∆ijt.
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asymptotic distribution is not centered around the true parameter value β0

β̂
a∼ N (β0 + b

β

∞, V
β

∞) , (9)

where b
β

∞ denotes the asymptotic bias and V
β

∞ is the covariance matrix (see Fernández-

Val and Weidner, 2018)). Fernández-Val and Weidner (2018) derive a simple heuristic to

determine the order of the bias induced by the incidental parameters: bias ∼ p/n, where

p and n are the numbers of parameters and observations, respectively. Based on this

heuristic Fernández-Val and Weidner (2018) conjecture that the bias of the three-way

fixed effects estimator we consider in this paper is of order (IT +JT + IJ)/(IJT ) and of

the form B1/I+B2/J+B3/T . In line with the bias structure in two-way error component

models, the inclusion of importer-time and exporter-time fixed effects entails two bias

terms of order 1/I and 1/J , respectively. Intuitively, the inclusion of dyadic fixed effects

induces another bias of order 1/T because there are only T informative observations per

additionally included parameter. Although the bias decreases with increasing I, J, T , its

order is larger than the order of the standard deviation, 1/
√
IJT .12 As a consequence,

confidence intervals are always too tight, leading to invalid inference (see Fernández-Val

and Weidner, 2018). The asymptotic distribution of the APEs is affected similarly by the

IPP:

δ̂k
a∼ N (δ0

k + b
δ

k,∞, V
δ

k,∞) , (10)

where b
δ

k,∞ denotes the asymptotic bias and V
δ

k,∞ is the variance. The conjecture of

Fernández-Val and Weidner (2018) does not incorporate explicit expressions for bias-

corrected estimators. Thus, based on their conjecture, we propose novel analytical and

jackknife bias corrections for three-way fixed effects models, which deal with the IPP

(including the Nickell-type bias) and the associated inference problem.13

In the following we adapt and extend the analytical and split-panel jackknife bias

corrections proposed by Fernández-Val and Weidner (2016) in the context of nonlinear

models with individual and time fixed effects to our three-way error component.14,15

12As mentioned by Fernández-Val and Weidner (2018), even if I = J = T , the order of the bias is 1/I
and the order of the standard deviation is

√
1/I3.

13In Appendix B.2 we formulate the asymptotic distributions of β̂IJT and δ̂k. In Appendix B.1, we
illustrate the statistical problem and the working of bias corrections with a version of the prominent
Neyman and Scott (1948) variance example.

14In Appendix B.2, we also derive the bias corrections for a two-way fixed effects model in our ijt
network panel structure. Previous two-way bias corrections considered either classical it panel structures
or ij pseudo-panels.

15We do not elaborate on the leave-one-out jackknife bias correction because it requires all variables to
be independent over time and thus rules out predetermined and serially-correlated regressors (Fernández-
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For the split-panel jackknife bias correction, the aforementioned three-part bias structure

implies that we need to split our panel across three dimensions, leading to the following

estimator for the structural parameters:

β̂
sp

= 4β̂I,J,T − β̂I/2,J,T − β̂I,J/2,T − β̂I,J,T/2, with (11)

β̂I/2,J,T =
1

2

[
β̂{i:i≤bI/2c,J,T} + β̂{i:i≥dI/2+1e,J,T}

]
,

β̂I,J/2,T =
1

2

[
β̂{I,j:j≤bJ/2c,T} + β̂{I,j:j≥dJ/2+1e,T}

]
,

β̂I,J,T/2 =
1

2

[
β̂{I,J,t:t≤bT/2c} + β̂{I,J,t:t≥dT/2+1e}

]
.

where b·c and d·e denote the floor and ceiling functions. To clarify the notation, the

subscript {i : i ≤ dI/2e}, J, T denotes that the estimator is based on a subsample, which

contains all importers and time periods, but only the first half of all exporters. Note that

similar to Fernández-Val and Weidner (2016), the split-panel jackknife bias correction

requires a homogeneity assumption of the distribution of yijt and xijt across the subsam-

ples. This assumption is for instance violated in the case of time trends or structural

breaks (see Fernández-Val and Weidner, 2016).

To characterize the analytical bias correction, we need to introduce some additional

notation. Let ∂ιrg(·) denote the r-th order partial derivative of an arbitrary function

g(·) with respect to some parameter ι. A collection of further required expressions are

reported in Table 2. Let D denote the dummy matrix corresponding to the fixed effects

Val and Weidner, 2018).

Table 2: Expressions and Derivatives for Logit and Probit Models

Logit Probit

Fijt (1 + exp(−ηijt))−1 Φ(ηijt)

∂ηFijt Fijt(1− Fijt) φ(ηijt)

∂η2Fijt ∂ηFijt(1− 2Fijt) −ηijtφ(ηijt)

νijt (yijt − Fijt)/∂ηFijt (yijt − Fijt)/∂ηFijt
Hijt 1 ∂ηFijt/(Fijt(1− Fijt))
ωijt ∂ηFijt Hijt∂ηFijt

∂η`ijt yijt − Fijt Hijt(yijt − Fijt)

Note: ηijt = x′ijtβ + λit + ψjt + µij is the linear predictor.
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and X denote the matrix with the regressors of interest. Define the residual projection

M̂ = IIJT − P̂ = IIJT −D(D′Ω̂D)−1D′Ω̂, where IIJT is an IJT × IJT identity matrix,

and Ω̂ is a diagonal weighting matrix with elements ω̂ijt = ∂ηF̂ijt.

Combining insights from the classical panel structure in Fernández-Val and Weidner

(2016), the pseudo-panel setting in Cruz-Gonzalez, Fernández-Val, and Weidner (2017),

and the three-way fixed effects conjecture by Fernández-Val and Weidner (2018), we

propose the following analytical bias correction:

β̃a = β̂I,J,T −
B̂β

1

I
− B̂β

2

J
− B̂β

3

T
, with B̂β

1 = Ŵ−1B̂1, B̂
β
2 = Ŵ−1B̂2, B̂

β
3 = Ŵ−1B̂3,

(12)

B̂1 = − 1

2JT

J∑
j=1

T∑
t=1

∑I
i=1 Ĥijt∂η2F̂ijt

(
M̂X

)
ijt∑I

i=1 ω̂ijt
,

B̂2 = − 1

2IT

I∑
i=1

T∑
t=1

∑J
j=1 Ĥijt∂η2F̂ijt

(
M̂X

)
ijt∑J

j=1 ω̂ijt
,

B̂3 = − 1

2IJ

I∑
i=1

J∑
j=1

(
T∑
t=1

ω̂ijt

)−1( T∑
t=1

Ĥijt∂η2F̂ijt

(
M̂X

)
ijt

+2
L∑
l=1

(T/(T − L))
T∑

t=l+1

∂η ˆ̀
ijt−lω̂ijt

(
M̂X

)
ijt

)
,

Ŵ =
1

IJT

I∑
i=1

J∑
j=1

T∑
t=1

ω̂ijt

(
M̂X

)
ijt

(
M̂X

)′
ijt
.

The first two correction terms in equation (12) are generalizations of the corresponding

components in the ij-pseudo panel structure of Cruz-Gonzalez, Fernández-Val, and

Weidner (2017) to our ijt structure. The inclusion of a third set of (ij) fixed effects addi-

tionally leads to the third correction term that mimics the correction for individual fixed

effects in an it-panel setting. In contrast to B̂1 and B̂2, the expression B̂3 includes a part

to correct the Nickell-type bias that arises by imposing the weak exogeneity condition

instead of the strict exogeneity condition (ζijt ⊥ (xij, λit, ψjt, µij), with xij := (xijs)
T
s=1).

The parameter L is a bandwidth used for the estimation of truncated spectral densities

(Hahn and Kuersteiner, 2007). In a model in which all regressors are strictly exogenous,

L is set to zero, such that the second part in the numerator of B̂3 vanishes. Note that

the strict exogeneity condition is often too strong in the context of panel data, because
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it rules out any dynamic feedback between regressors and the dependent variable. In

case of weakly exogeneous regressors, for instance if one of the regressors is a lagged

dependent variable, Fernández-Val and Weidner (2016) suggest conducting a sensitivity

analysis with L ∈ {1, 2, 3, 4}.

Moving to the APEs, the split-panel jackknife estimator is formed by replacing the

estimators for the structural parameters with estimators for the APEs in formula (11).

The analytically bias-corrected estimator is given by

δ̃a = δ̂ − B̂δ
1

I
− B̂δ

2

J
− B̂δ

3

T
, with (13)

B̂δ
1 =

1

2JT

J∑
j=1

T∑
t=1

∑I
i=1−Ĥijt∂η2F̂ijt

(
P̂Ψ̂
)
ijt

+ ∂η2∆̂ijt∑I
i=1 ω̂ijt

,

B̂δ
2 =

1

2IT

I∑
i=1

T∑
t=1

∑J
j=1−Ĥijt∂η2F̂ijt

(
P̂Ψ̂
)
ijt

+ ∂η2∆̂ijt∑J
j=1 ω̂ijt

,

B̂δ
3 =

1

2IJ

I∑
i=1

J∑
j=1

(
T∑
t=1

ω̂ijt

)−1( T∑
t=1

−Ĥijt∂η2F̂ijt

(
P̂Ψ̂
)
ijt

+ ∂η2∆̂ijt

+2
L∑
l=1

(T/ (T − l))
T∑

t=l+1

∂η ˆ̀
ijt−lω̂ijt

(
M̂Ψ̂

)
ijt

)
,

where Ψ̂ijt = ∂η∆̂ijt/ω̂ijt. The last part in the numerator of B̂δ
3 is again dropped if all

regressors are assumed to be strictly exogenous. Note that all quantities are evaluated

at bias-corrected structural parameters and the corresponding estimates of the fixed

effects.16 An appropriate covariance estimator for the APEs of the three-way fixed effects

model is
16For this purpose, we use a computationally efficient offset algorithm as in Czarnowske and Stammann

(2019).
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V̂δ =
1

I2J2T 2


(

I∑
i=1

J∑
j=1

T∑
t=1

̂̄∆ijt

)(
I∑
i=1

J∑
j=1

T∑
t=1

̂̄∆ijt

)′
︸ ︷︷ ︸

v1

+
I∑
i=1

J∑
j=1

T∑
t=1

Γ̂ijtΓ̂
′
ijt︸ ︷︷ ︸

v2

+ 2
I∑
i=1

J∑
j=1

T∑
s>t

̂̄∆ijtΓ̂
′
ijs︸ ︷︷ ︸

v3

 , (14)

where ̂̄∆ijt = ∆̂ijt − δ̂, ∆̂ijt = [∆̂1
ijt, . . . , ∆̂

m
ijt]
′, δ̂ = [δ̂1, . . . , δ̂m]′, and

Γ̂ijt =

(
I∑
i=1

J∑
j=1

T∑
t=1

∂β∆̂ijt −
(
P̂X
)
ijt
∂η∆̂ijt

)′
Ŵ−1

(
M̂X

)
ijt
ω̂ijtν̂ijt +

(
P̂Ψ̂
)
ijt
∂η ˆ̀

ijt .

Note that the term v2 refers to the variation induced by θ̂. The terms v1 and v3 are in

the spirit of Fernández-Val and Weidner (2016) to improve the finite sample properties.

These are, on the one hand, the variation induced by replacing population by sample

means (v1). On the other hand, if we are concerned about the strict exogeneity assump-

tion (as we are in the case of dynamic three-way error structure models), the covariance

between v1 and v2 should be incorporated (v3).

Just as the calculation of the MLE, the application of the bias corrections is computation-

ally demanding due the high number of parameters. Therefore, we suggest to use the

algorithms developed by Stammann (2018) and Czarnowske and Stammann (2019).

4 Monte Carlo Simulations

In this section, we conduct extensive simulation experiments to investigate the properties

of different estimators for both the structural parameters and the APEs. The estima-

tors we study are MLE, ABC and SPJ.17 Our main focus are the biases and inference

17We do not include OLS as an alternative estimator for APEs in our discussion since – apart from a
Nickell-bias in a dynamic three-way fixed effects model – it suffers from a kind of misspecification bias.
In a standard gaussian data generating process, where the dependent variable is continuous instead of
binary, the bias corrected ordinary least squares estimator proposed by Hahn and Kuersteiner (2002)
works as desired, however it fails in our probit data generating process. The reason is that a large share of
the predicted probabilities obtained by OLS exceed the boundaries of the unit interval, such that estimates
of APEs become heavily biased. This kind of misspecification bias already becomes evident, if we consider
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accuracies. To this end, we compute the relative bias and standard deviation (SD) in

percent, the ratio between bias and standard error, the ratio between standard error and

standard deviation (SE/SD), and the coverage probabilities (CPs) at a nominal level of

95 percent.

For the simulation experiments we adapt the design for a dynamic probit model of

Fernández-Val and Weidner (2016) to our ijt-panel structure with three-way fixed

effects.18 In line with our theoretical model, the simulations include unobserved com-

ponents captured by fixed effects in the it, jt, and ij dimensions, as well as the lagged

dependent variable. Specifically, we generate data according to

yijt = 1[βyyijt−1 + βxxijt + λit + ψjt + µij ≥ εijt] ,

yij0 = 1[βxxij0 + λi0 + ψj0 + µij ≥ εij0] ,

where i = 1, . . . , N , j = 1, . . . , N , t = 1, . . . , T , βy = 0.5, βx = 1, λit ∼ iid. N (0, 1/24),

ψjt ∼ iid. N (0, 1/24), µij ∼ iid. N (0, 1/24), and εijt ∼ iid. N (0, 1).19 The exogenous

regressor is modeled as an AR-1 process, xijt = 0.5xijt−1 + λit + ψjt + µij + νijt, where

νijt ∼ iid. N (0, 0.5) and xij0 ∼ iid. N (0, 1). We consider different sample sizes, specif-

ically N ∈ {50, 100, 150} and T ∈ {10, 20, 30, 40, 50} and generate 1,000 data sets for

each.

Tables A3 – A11 in Appendix C.1 summarize the extensive simulation results. For ABC

we report two different choices of the bandwidth parameter, L = 1 and L = 2, which are

indicated by values in parentheses. In the following, we discuss the biases and coverage

probabilities for N ∈ {50, 150} which are shown in Figures 2 – 4 for the sake of clarity.

We focus on these two statistics in particular because they give us a good idea about the

quality of the inference of an estimator.

a dynamic two-way fixed effects data generating process, which does not suffer from a Nickell bias. We
investigated this issue in additional extensive simulation experiments and provide these results on request.

18Further simulation experiments including dynamic panel models with two-way fixed effects and static
panel models with three-way fixed effects are presented in Appendices C.2 and C.3. In an earlier version
of this article we additionally report simulations results for static two-way fixed effects models.

19We again follow Fernández-Val and Weidner (2016) and incorporate the information that {λit}IT ,
{ψjt}JT , and {µij}IJ are independent sequences, and λit, ψjt, and µij are independent for all it, jt, ij in
the covariance estimator for the APEs. The explicit expression is provided in Appendix B.2.
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Figure 2: Dynamic: Three-way Fixed Effects – Predetermined Regressor
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Figure 3: Dynamic: Three-way Fixed Effects – Exogenous Regressor
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Figure 4: Dynamic: Three-way Fixed Effects – Exogenous Regressor (Long-Run)
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We start by considering the different estimators for the structural parameters summa-

rized in Figures 2 and 3. For both kinds of regressors, MLE exhibits a severe bias that

decreases with increasing T . However, even with N = 150 and T = 50, the estimator

shows a distortion of 11 percent in the case of the predetermined regressor and 5

percent in the case of the exogenous regressor. We also find that the inference is not

valid, since the CPs are zero or close to zero. The bias corrections bring a substantial

improvement. First, they reduce the bias considerably. For example, the MLE estimator

of the predetermined regressor shows a distortion of 64 percent for T = 10 and N = 150.

ABC reduces the bias to 8 percent and SPJ to 20 percent. In the case of the exogenous

regressor, MLE exhibits a bias of 23 percent, whereas ABC has a bias of 1 percent and

SPJ of 7 percent. Irrespective of the type of the regressor, both bias-corrected estimators

also converge quickly to the true parameter value with growing T . Second, the bias

corrections improve the CPs. For the exogenous regressor the CPs of ABC are close to

the desired level of 95 percent for all T , whereas SPJ remains far away from 95 percent

even at T = 50. In the case of the predetermined regressor, the CPs of both corrections

approach the nominal level when T rises. This happens faster for ABC.

We proceed with the APEs, where we distinguish between direct and long-run APEs. We

first look at the direct APEs in Figures 2 and 3. Overall, we obtain similar findings as
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for the structural parameters. MLE is distorted over all settings, but the bias decreases

as T increases. The distortion is especially severe in the case of the the predetermined

regressor, where it ranges from roughly 70 percent for the settings with T = 10 to 15

percent for T = 50. In contrast, the bias of the MLE for the exogenous regressor ranges

from roughly 4 percent (T = 10) to 1 percent (T = 50). The bias corrections bring a sub-

stantial reduction in both cases. Whereas ABC shows only a small distortion of 1 percent

in the case of the exogenous regressor at T = 10, SPJ is even more heavily distorted than

MLE. However, with increasing T , both SPJ and ABC quickly converge to the true APE.

Looking at inference, unlike ABC, SPJ needs a sufficiently large number of time periods

to get its CPs close to 95 percent. For the predetermined regressor, these convergence

processes last longer than for the exogenous regressor. In contrast, the coverage prob-

abilities of the MLE are always far below the desired nominal level. This is especially

noteworthy for the exogenous regressor with T ≥ 40, where the bias of MLE appears

to be negligibly small for practical work. However, the bias of the MLE is still large

compared to the estimator standard error. This becomes evident, when looking at the

Bias/SE ratio in Tables A3 – A5, which is much higher for MLE than for the bias corrected

estimators. Turning to the results of the long-run APEs reported in Figure 4, we note that

the results are qualitatively similar to the results of the direct APE of the exogenous re-

gressor. As T increases, both bias corrections quickly bring the bias towards zero and the

coverage probabilities quickly reach the nominal level. Again, the convergence of ABC is

faster and inference of MLE remains invalid despite small biases in settings with larger T .

Overall, our three-way fixed effects simulation results confirm the conjecture of Fernández-

Val and Weidner (2018) about the general form of the bias and lend support to our bias

corrections. First, we find that the bias corrections indeed substantially mitigate the

bias. Second, as already found in other studies, analytical bias corrections outperform

split-panel jackknife bias corrections (see among others Fernández-Val and Weidner,

2016, and Czarnowske and Stammann, 2019). For samples with shorter time horizons,

ABC is often less distorted and its dispersion is generally lower. This is also reflected by

better CPs. Generally, in the three-way fixed effects setting, a sufficiently large number

of time periods appears to be crucial to obtain reliable results for the bias-corrected

estimators. As a main takeaway, our simulation results suggest that estimates based on

MLE should be treated with great caution, because even in situations where we expect

small biases, the inference may be invalid.

21



5 Determinants of the Extensive Margin of Trade

Having described the estimation and bias correction procedures, we now turn to the

estimation of the determinants of the extensive margin of international trade outlined in

Section 2.

Recall equation (3) that relates the incidence of nonzero aggregate trade flows to

exporter-time and importer-time specific characteristics, trade in the previous period,

time-invariant unobservable trade barriers and bilateral trade policy variables:

yijt =

1 if κ+ λit + ψjt + βyyij(t−1) + x′ijtβx + µij ≥ ζijt,

0 else .

This yields the following dynamic three-way fixed effects probit model:

Pr(yijt = 1|yij(t−1),xijt, λit, ψjt, µij) = F
(
βyyij(t−1) + x′ijtβx + λit + ψjt + µij

)
, (15)

yij(t−1) is the lagged dependent variable, x is a vector of observable bilateral variables,

and βy and βx are the corresponding parameters. We largely follow Helpman, Melitz,

and Rubinstein (2008) and the wider literature on the determinants of the intensive
margin of trade (compare Head and Mayer, 2014) in the choice of these variables:

distance, a common land border, the same origin of the legal system, common language,

previous colonial ties, a joint currency, an existing free trade agreement, or joint mem-

bership in the WTO. The effect of all time-invariant variables will only be identified in

specifications in which we omit the bilateral fixed effects. In terms of data, we turn to

the comprehensive gravity dataset provided alongside Head, Mayer, and Ries (2010),

which encompasses annual information on bilateral trade flows and these variables of

interest of 208 countries from 1948 – 2006.

5.1 Main Results

Before turning to the regression results, we repeat the descriptive analysis about the

persistence of the bilateral trade flows from Section 1, now considering the transition

probabilities into export from period t− 1 to t for the time horizon from 1948 – 2006.

Table 3 confirms the high level of persistence: 86.8 percent of the country pairs which

did not trade in the previous year did not trade in the following year and 92.3 percent

of the pairs which did trade in the previous year continued to trade in the following

year. Thus, 79.1 percent of the unconditional probability to export in a given period
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can be explained by the export status in the previous period.20 However, Table 3 does

not reveal any information about the kind of persistence. In the following analysis we

will investigate the importance of using dynamic model specifications which allow us to

disentangle the observed persistence into two sources: (i) true state dependence and (ii)

observed and unobserved heterogeneity.

Table 3: Transition Probabilities

yijt = 0 yijt = 1
yij(t−1) = 0 86.8 % 13.2 %
yij(t−1) = 1 7.7 % 92.3 %

Table 4 reports average partial effects of several static and dynamic fixed effects probit

specifications.21 Bias-corrected estimates and their corresponding standard errors are

printed in bold. For comparison, the uncorrected estimates are also shown. In column

(1) we first mimic the static specification estimated by Helpman, Melitz, and Rubinstein

(2008).22 Their specification includes exporter, importer, and time fixed effects.23 All

average partial effects have the expected sign, indicating a negative impact of distance

on the probability to trade, while having a common border, the same origin of the legal

system, a shared language, or a joint colonial history are all estimated to have a positive

impact. Also note the strong and highly significant impact of a common currency, free

trade agreement or joint membership of the WTO. Ceteris paribus, each is estimated to

increase the probability of nonzero flows by between 6 and 10 percentage points.

Column (2) introduces a stricter set of fixed effects, namely at the exporter-time and

importer-time level. This specification can be considered a theory-consistent estimation

of the model by HMR, and of our model if entry costs are zero and other bilateral trade

cost determinants are fully observable. The average partial effects are qualitatively the

same and quantitatively similar for most variables to those in column (1). However, e.g.

the estimated effect of colonial ties more than doubles and the estimated WTO effect is

roughly cut in half.

Specification (3) keeps the same fixed effects, but adds a lagged dependent variable and

20The number is computed as difference between the probability of exporting in period t conditional on
exporting and not exporting in period t− 1.

21Coefficient estimates are reported in Table A24 in the Appendix.
22Helpman, Melitz, and Rubinstein (2008) use a dataset that ranges from 1970 to 1997. They also

include dummy variables for whether both countries are landlocked or islands, or follow the same religion.
Hence our estimates deviate somewhat from theirs, while remaining qualitatively similar.

23Note that following Fernández-Val and Weidner (2018) the incidental bias problem is small enough
to ignore in this setting with i, j and t fixed effects, since the order of the bias is 1/IT + 1/JT + 1/IJ ,
which in our case becomes negligible small since I, J and T are large.
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Table 4: Probit Estimation: Average partial effects

Dependent variable: yijt

(1) (2) (3) (4) (5)
direct long-run direct long-run

lagged DV - - 0.346∗∗∗ - - 0.179∗∗∗ -
(-) (-) (0.030) (-) (-) (0.035) (-)
- - 0.344∗∗∗ - - 0.138∗∗∗ -

(-) (-) (0.031) (-) (-) (0.032) (-)
log(Distance) - -0.135∗∗∗ -0.066∗∗∗ -0.133∗∗∗ - - -

(-) (0.012) (0.006) (0.011) (-) (-) (-)
−0.136∗∗∗ −0.135∗∗∗ −0.066∗∗∗ −0.132∗∗∗ - - -
(0.001) (0.012) (0.006) (0.012) (-) (-) (-)

Land border - 0.035∗∗∗ 0.015∗∗∗ 0.030∗∗∗ - - -
(-) (0.005) (0.003) (0.005) (-) (-) (-)

0.054∗∗∗ 0.035∗∗∗ 0.015∗∗∗ 0.030∗∗∗ - - -
(0.004) (0.005) (0.003) (0.005) (-) (-) (-)

Legal - 0.023∗∗∗ 0.011∗∗∗ 0.022∗∗∗ - - -
(-) (0.002) (0.001) (0.002) (-) (-) (-)

0.019∗∗∗ 0.023∗∗∗ 0.011∗∗∗ 0.022∗∗∗ - - -
(0.001) (0.002) (0.001) (0.002) (-) (-) (-)

Language - 0.071∗∗∗ 0.035∗∗∗ 0.070∗∗∗ - - -
(-) (0.006) (0.003) (0.006) (-) (-) (-)

0.078∗∗∗ 0.071∗∗∗ 0.035∗∗∗ 0.069∗∗∗ - - -
(0.001) (0.006) (0.003) (0.006) (-) (-) (-)

Colonial ties - 0.107∗∗∗ 0.061∗∗∗ 0.117∗∗∗ - - -
(-) (0.011) (0.007) (0.013) (-) (-) (-)

0.039∗∗∗ 0.111∗∗∗ 0.066∗∗∗ 0.125∗∗∗ - - -
(0.004) (0.011) (0.007) (0.014) (-) (-) (-)

Currency union - 0.103∗∗∗ 0.053∗∗∗ 0.103∗∗∗ 0.038∗∗∗ 0.024∗∗∗ 0.038∗∗∗

(-) (0.009) (0.005) (0.010) (0.008) (0.006) (0.009)
0.078∗∗∗ 0.103∗∗∗ 0.054∗∗∗ 0.103∗∗∗ 0.037∗∗∗ 0.025∗∗∗ 0.036∗∗∗

(0.003) (0.010) (0.005) (0.010) (0.009) (0.007) (0.010)
FTA - 0.089∗∗∗ 0.045∗∗∗ 0.088∗∗∗ 0.009∗ 0.004 0.007

(-) (0.009) (0.005) (0.009) (0.005) (0.004) (0.006)
0.103∗∗∗ 0.088∗∗∗ 0.044∗∗∗ 0.086∗∗∗ 0.008 0.003 0.005
(0.004) (0.009) (0.005) (0.009) (0.005) (0.004) (0.006)

WTO - 0.026∗∗∗ 0.013∗∗∗ 0.026∗∗∗ 0.006∗∗∗ 0.004∗∗ 0.007∗∗

(-) (0.003) (0.002) (0.003) (0.002) (0.002) (0.003)
0.061∗∗∗ 0.026∗∗∗ 0.013∗∗∗ 0.025∗∗∗ 0.006∗∗∗ 0.005∗∗ 0.007∗∗

(0.001) (0.003) (0.002) (0.003) (0.002) (0.002) (0.003)

Fixed effects i, j, t it, jt it, jt it, jt, ij it, jt, ij
Sample size 1204671 1204671 1171794 1204671 1171794
Deviance 8.891×105 7.019×105 5.183×105 4.76×105 4.189×105

Notes: Column (1) uncorrected average partial effects, columns (2) - (5) bias-corrected average partial effects
(bold font) and uncorrected average partial effects (normal font). Column (5) bias-corrected with L = 2. Standard
errors in parenthesis. ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1
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thus controls for one type of persistence. Assuming no unobservable bilateral hetero-

geneity, this specification correctly estimates the model set up in Section 2. As the partial

effects of static and dynamic models are not directly comparable due to the feedbacks

involved in the latter, we show two types of average partial effects for our dynamic

specifications: the usual direct effects and the long-run effects described in Section 3.

The first result to note for the third specification is the highly significant average partial

effect for the lagged dependent variable, which reflects the strong impact of previous

nonzero trade flows on current ones. Ceteris paribus, the average partial effect shows a

35 percentage points higher probability of nonzero trade, given the two countries were

also engaged in trade in the previous year. This implies that 43.7 percent of the observed

persistence are attributed to true state dependence in this first dynamic specification.24

In terms of our model, this suggests a vast effect of market entry costs on the aggregate

extensive margin. The second observation is that direct APEs are about 50 percent

smaller than in column (2) across the board. However, once dynamic adjustments are

taken into account, the average partial effects resulting from specifications (2) and (3)

become very similar, suggesting that accounting for the market entry dynamics mainly

matters for getting the timing of trade policy effects right, rather than for the overall

magnitude of the effects.

Specification (4) takes one step back and one forward. While not including the lagged

dependent variable in the estimation, it introduces a bilateral fixed effect that controls

for a second type of persistence — bilateral unobserved heterogeneity. This also follows

the important insight by Baier and Bergstrand (2007), who show that controlling for

unobserved bilateral heterogeneity produces a considerably different estimated impact

of free trade agreements, among other variables, on the intensive margin of trade. While

now an identification of many of the variables of interest is no longer possible because

of their time invariance, this specification reveals a much reduced estimated impact

of the time-varying variables. The impact of a common currency on the probability

of exporting is reduced to 3.8 percentage points, while those of a common free trade

agreement and WTO are decreased to less than 1 percentage point. These results high-

light the importance of controlling for unobserved country pair heterogeneity to avoid

endogeneity problems associated with trade policy variables.

Finally, in the last two columns we present the results from our preferred specification

(5), which implements equation (15). The estimation again includes the “full set” of

fixed effects, i.e. exporter-time, importer-time and bilateral fixed effects, now combined

with the lagged dependent variable, and therefore controls for both kinds of persistence

24This value is calculated as the ratio of the estimated average partial effect and the unconditional
exporting probability (34.6/79.1).
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simultaneously. Again, the average partial effect on the lagged dependent variable is

highly significant. It now entails a partial effect of about 18 percentage points, i.e.

roughly 22.6 percent of the observed persistence can be attributed to true state depen-

dence and 77.4 percent to observed and unobserved factors. Failure to account for

unobserved heterogeneity in specification (3) hence overestimated the importance of

the lagged dependent variable (corresponding to entry costs in our model) roughly by

a factor of two and therefore mislabelled a substantial part of spurious as true state

dependence. Considering the effects of the time-varying trade policy variables, statisti-

cally significant direct average partial effects in column (5) are estimated for a common

currency at 2.4 percentage points and for joint WTO membership at 0.4 percentage

points. The impact of a free trade agreement is statistically insignificant. Just as in the

comparison between specifications (2) and (3), the average partial effects again become

very similar when the static effects are compared to the long-run effects in the dynamic

specification.

When comparing bias-corrected and uncorrected average partial effects throughout

Table 4, it is noticeable that both differ only slightly for the exogenous regressors within

the different specifications. The most significant impact is observed on the average

partial effect for the predetermined variable, which in specification (5) differs by almost

24 percent. These results are in line with the theoretical properties of the estimators

and the findings of our simulation study.25 Despite the small biases for the exogenous

variables, a bias correction is still necessary for our three-way fixed effects specifications

because the biases are not negligible relative to the standard errors and thus inference

of the uncorrected estimator is invalid. Note that for applications with a shorter time

horizon, the biases will be more evident.

5.2 Predictive Analysis

After we have seen that the presented innovations matter significantly for the estimation

of extensive margin determinants, we now consider the predictive performance of the

different specifications discussed above. As an additional benchmark, we also look

at a naive — purely descriptive — approach that predicts export decisions in period

t solely based on the export decision in period t − 1. For the resulting altogether six

options, we evaluate the predictive power using the following measures: the total

25For the two-way models in columns (2) - (3) the order of the bias is 1/I + 1/J , i.e. the bias only
depends on the number of exporters/importers. For the three-way models in columns (4) - (5) the order
of the bias is 1/I + 1/J + 1/T , i.e. the bias additionally depends on the number of time periods. In
our application the number of exporters/importers is relatively large but the number of time periods is
substantially lower.
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share of correctly predicted export decisions (accuracy), the share of correctly predicted

decisions conditional on not exporting (true negative rate), and the share of correctly

predicted decisions conditional on exporting (true positive rate). As becomes clear in

Table 5, the naive approach already works very well for predictive purposes. Close

to 90 percent of the exporting decisions in period t are correctly predicted by simply

reproducing exporting decision from t−1, irrespective of the measure we are considering.

As it turns out, both the static model with i, j, and t fixed effects (specification (1)) and

the static model with it and jt fixed effects (specification (2)) produce poorer predictions

than the naive approach — clearly so by about five percentage points in the former case.

However, this changes once persistence is explicitly taken into account (specifications

(3) to (5)). All of them at least slightly improve the predictions of the naive approach.

Whether persistence is incorporated only via the lagged dependent variable or via pair

fixed effects turns out to yield very similar predictive quality. Combining both in our

preferred specification — the dynamic three-way fixed effects models — yields the

highest predictive power. We are able to correctly predict 92.5 percent of the export

decisions, 91.4 percent of the decisions conditional on not exporting, and 93.2 percent of

the decisions conditional on exporting, implying an improvement compared to the naive

approach by 2.4 – 2.5 percentage points. All in all, the predictive analysis underlines the

importance of controlling for true state dependence and unobserved bilateral factors

simultaneously.

Table 5: Predictive Analysis

Naive (1) (2) (3) (4) (5)

Accuracy 90.0 % 83.0 % 86.9 % 91.1 % 91.3 % 92.5 %
True negative rate 88.9 % 78.9 % 83.6 % 89.6 % 90.0 % 91.4 %
True positive rate 90.8 % 86.0 % 89.2 % 92.2 % 92.2 % 93.2 %

Notes: Column (1) uncorrected probit model, columns (2) – (5) bias-corrected probit
model.

5.3 Robustness Checks

We next consider two robustness checks for our main results from Section 5.1. First,

while our preferred estimation of the extensive margin of trade with a dynamic three-way

fixed effects binary choice estimator follows from the stylized facts and our theoretical

model, the decision on which binary choice estimator to use hinges on the distributional

assumption for the error term (and hence for the demand shock in our model). We

followed Eaton, Kortum, and Kramarz (2011) and assumed log-normal shocks, leading

us to using a probit for our main estimations. We now consider log-logistic shocks and
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the resulting logit estimator instead. Table 6 displays the results for the same specifica-

tions as in Table 4, but estimated using a logit. Reassuringly, the average partial effects

are very similar to the probit case for all variables in all specifications. Introducing

the different innovations step-by-step changes the estimated effects in the same way

as for the probit. The insights discussed above therefore do not hinge on the specific

distributional assumption made in the parametrization of the probability of success.

Second, in the estimation of our preferred specification (5) we have discretionary power

in one dimension for the exact form of bias correction used. Specifically, the bandwidth

parameter L used to estimate the spectral densities has to be chosen. We therefore

follow the recommendation by Fernández-Val and Weidner (2016) and investigate the

sensitivity of the results with respect to L. Table 7 depicts the direct and long-run

average partial effects obtained with the bias-corrected dynamic three-way fixed effects

probit estimator for L ∈ {1, 2, 3, 4}. Again, our results turn out to be very robust. There

only appears to be a slight upward trend in the estimated persistence for larger L.

6 Conclusion

In this paper we reexamine the determinants of the extensive margin of international

trade. We set up a model that exhibits a dynamic component and allows for time-

invariant unobserved bilateral trade cost factors, generating persistence — a feature

in the data that has so far been given little attention. We estimate the model using a

dynamic probit estimator with high-dimensional fixed effects. As fixed effects create an

incidental parameter problem in binary choice settings, we characterize and implement

bias corrections. Finally, we show that our estimates of the determinants of the extensive

margin of trade differ significantly from previous ones. This highlights the importance

of true state dependence and unobserved heterogeneity and therefore strongly supports

the use of our bias-corrected dynamic fixed effects estimator.

The extensive margin of trade obviously extends beyond the aggregate level, warranting

further research at lower levels of aggregation, in particular in the context of firms.

While our model’s prediction and its empirical specification rely on some abstractions, it

provides a very tractable and flexible framework that can be estimated with recently

established estimation procedures, when combined with the bias correction technique

we introduce.
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Table 6: Logit Estimation: Average partial effects

Dependent variable: yijt

(1) (2) (3) (4) (5)
direct long-run direct long-run

lagged DV - - 0.331∗∗∗ - - 0.168∗∗∗ -
(-) (-) (0.029) (-) (-) (0.033) (-)
- - 0.332∗∗∗ - - 0.130∗∗∗ -

(-) (-) (0.029) (-) (-) (0.031) (-)
log(Distance) - -0.138∗∗∗ -0.067∗∗∗ -0.134∗∗∗ - - -

(-) (0.012) (0.006) (0.011) (-) (-) (-)
-0.140∗∗∗ -0.137∗∗∗ -0.067∗∗∗ -0.133∗∗∗ - - -
(0.001) (0.012) (0.006) (0.012) (-) (-) (-)

Land border - 0.058∗∗∗ 0.016∗∗∗ 0.031∗∗∗ - - -
(-) (0.006) (0.003) (0.005) (-) (-) (-)

0.077∗∗∗ 0.059∗∗∗ 0.016∗∗∗ 0.032∗∗∗ - - -
(0.004) (0.006) (0.003) (0.005) (-) (-) (-)

Legal - 0.025∗∗∗ 0.012∗∗∗ 0.023∗∗∗ - - -
(-) (0.002) (0.001) (0.002) (-) (-) (-)

0.020∗∗∗ 0.025∗∗∗ 0.012∗∗∗ 0.023∗∗∗ - - -
(0.001) (0.002) (0.001) (0.002) (-) (-) (-)

Language - 0.069∗∗∗ 0.035∗∗∗ 0.069∗∗∗ - - -
(-) (0.006) (0.003) (0.006) (-) (-) (-)

0.078∗∗∗ 0.069∗∗∗ 0.035∗∗∗ 0.068∗∗∗ - - -
(0.001) (0.006) (0.003) (0.006) (-) (-) (-)

Colonial ties - 0.122∗∗∗ 0.069∗∗∗ 0.130∗∗∗ - - -
(-) (0.012) (0.008) (0.014) (-) (-) (-)

0.040∗∗∗ 0.127∗∗∗ 0.074∗∗∗ 0.136∗∗∗ - - -
(0.004) (0.013) (0.008) (0.014) (-) (-) (-)

Currency union - 0.104∗∗∗ 0.053∗∗∗ 0.102∗∗∗ 0.041∗∗∗ 0.027∗∗∗ 0.041∗∗∗

(-) (0.009) (0.005) (0.010) (0.009) (0.006) (0.009)
0.077∗∗∗ 0.104∗∗∗ 0.054∗∗∗ 0.102∗∗∗ 0.040∗∗∗ 0.028∗∗∗ 0.039∗∗∗

(0.002) (0.010) (0.005) (0.010) (0.010) (0.007) (0.010)
FTA - 0.098∗∗∗ 0.046∗∗∗ 0.088∗∗∗ 0.009∗ 0.004 0.007

(-) (0.009) (0.005) (0.009) (0.005) (0.004) (0.006)
0.110∗∗∗ 0.097∗∗∗ 0.045∗∗∗ 0.086∗∗∗ 0.008 0.003 0.004
(0.004) (0.009) (0.005) (0.009) (0.005) (0.004) (0.006)

WTO - 0.022∗∗∗ 0.013∗∗∗ 0.026∗∗∗ 0.007∗∗∗ 0.005∗∗∗ 0.008∗∗∗

(-) (0.002) (0.002) (0.003) (0.002) (0.002) (0.003)
0.056∗∗∗ 0.021∗∗∗ 0.013∗∗∗ 0.025∗∗∗ 0.006∗∗∗ 0.006∗∗∗ 0.008∗∗∗

(0.001) (0.002) (0.002) (0.003) (0.002) (0.002) (0.003)

Fixed effects i, j, t it, jt it, jt it, jt, ij it, jt, ij
Sample size 1204671 1204671 1171794 1204671 1171794
Deviance 8.857×105 6.976×105 5.200×105 4.728×105 4.184×105

Notes: Column (1) uncorrected average partial effects, columns (2) - (5) bias-corrected average partial effects
(bold font) and uncorrected average partial effects (normal font). Column (5) bias-corrected with L = 2. Standard
errors in parenthesis. ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1
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Table 7: Probit Estimation with Different Bandwidths: Bias-Corrected Average Partial Effects

Dependent variable: yijt

L = 1 L = 2 L = 3 L = 4

direct long-run direct long-run direct long-run direct long-run

lagged DV 0.174∗∗∗ - 0.179∗∗∗ - 0.182∗∗∗ - 0.183∗∗∗ -
(0.034) (-) (0.035) (-) (0.036) (-) (0.036) (-)

Currency union 0.025∗∗∗ 0.038∗∗∗ 0.024∗∗∗ 0.038∗∗∗ 0.024∗∗∗ 0.038∗∗∗ 0.025∗∗∗ 0.038∗∗∗

(0.006) (0.009) (0.006) (0.009) (0.006) (0.009) (0.006) (0.009)
FTA 0.004 0.006 0.004 0.007 0.005 0.007 0.005 0.008

(0.004) (0.006) (0.004) (0.006) (0.004) (0.006) (0.004) (0.006)
WTO 0.004∗∗ 0.007∗∗ 0.004∗∗ 0.007∗∗ 0.005∗∗ 0.007∗∗ 0.005∗∗ 0.008∗∗∗

(0.002) (0.003) (0.002) (0.003) (0.002) (0.003) (0.002) (0.003)

Notes: All columns include Origin × Year, Destination × Year and Origin × Destination fixed effects. Standard
errors in parenthesis. ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1
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Online Appendix

A Stylized facts

Figure A1: Determinants of the Extensive margin of Trade — Gravity and Persistence
(1990–1991).
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Figure A2: Determinants of the Extensive Margin of Trade — Gravity and Persistence
(1997–2006).
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B Econometric Details

B.1 Neyman-Scott Variance Example

In this section we study two variants of the classical Neyman and Scott (1948) variance

example to support the form of the bias terms, and to illustrate the functionality of the

bias corrections. To the best of our knowledge, the variance example of Neyman and

Scott (1948) has not been investigated for our specific error components. We start with

the more general three-way fixed effects case, which nests the two-way error structure.

B.1.1 Three-way Fixed Effects

Let i = 1, . . . , I, j = 1, . . . , J and t = 1, . . . , T . Consider the following linear three-way

fixed effects model

yijt = x′ijtβ + λit + ψjt + µij + uijt . (A1)

According to Balazsi, Matyas, and Wansbeek (2018), the appropriate within transforma-

tion corresponding to equation (A1) is given by

zijt − z̄ij· − z̄·jt − z̄i·t + z̄··t + z̄·j· + z̄i·· − z̄··· ,

where z̄ij· = 1
T

∑T
t=1 zijt, z̄·jt = 1

I

∑I
i=1 zijt, z̄i·t = 1

J

∑J
j=1 zijt, z̄··t = 1

IJ

∑I
i=1

∑J
j=1 zijt,

z̄·j· =
1
IT

∑I
i=1

∑T
t=1 zijt, z̄i·· =

1
JT

∑J
j=1

∑T
t=1 zijt, and z̄··· = 1

IJT

∑I
i=1

∑J
j=1

∑T
t=1 zijt.

This result is helpful to study the following variant of the Neyman and Scott (1948)

variance example

yijt|λ,ψ,µ ∼ N (λit + ψjt + µij, β) ,

where we can now easily form the uncorrected variance estimator

β̂I,J,T =
1

IJT

I∑
i=1

J∑
j=1

T∑
t=1

(yijt − ȳij· − ȳ·jt − ȳi·t + ȳ··t + ȳ·j· + ȳi·· − ȳ···)2 (A2)

and the (degrees-of-freedom)-corrected counterpart

A3



β̂corI,J,T =
IJT

(I − 1)(J − 1)(T − 1)
β̂I,J,T .

Taking the expectation of (A2) (conditional on the fixed effects) yields

β̄I,J,T = Eα[β̂I,J,T ] = β0

(
(I − 1)(J − 1)(T − 1)

IJT

)
(A3)

= β0

(
1− 1

I
− 1

J
− 1

T
+

1

IT
+

1

JT
+

1

IJ
− 1

IJT

)
,

where β0 is the true variance parameter. Thus, the three leading bias terms, which drive

the main part of the asymptotic bias, are B
β

1,∞ = −β0, B
β

2,∞ = −β0, and B
β

3,∞ = −β0.

Analytical Bias Correction

Using equation (A3), we can form the analytically bias-corrected estimator

β̃aI,J,T = β̂I,J,T −
B̂β

1,I,J,T

I
−

B̂β
2,I,J,T

J
−

B̂β
3,I,J,T

T
, (A4)

where we set B̂β
1,I,J,T = −β̂I,J,T , B̂β

2,I,J,T = −β̂I,J,T , and B̂β
3,I,J,T = −β̂I,J,T to reduce

the order of the bias in equation (A3) at costs of introducing higher order terms (see

equation (A6)). Thus, we can rewrite the analytically bias-corrected estimator (A4)

β̃aI,J,T = β̂I,J,T

(
1 +

1

I
+

1

J
+

1

T

)
. (A5)

Taking the expectation of (A5) yields

β̄aI,J,T = Eα[β̃aI,J,T ] = β0

(
1− 1

I
− 1

J
− 1

T
+

1

IT
+

1

JT
+

1

IJ
− 1

IJT

)(
1 +

1

I
+

1

J
+

1

T

)
(A6)

= β0

(
1− 1

IT
− 1

JT
− 1

T 2
− 3

IJ
+

1

I3
+

1

J3
+

4

IJT
+

1

IT 2
+

1

JT 2

− 1

I3T
− 1

J3T
− 1

IJT 2

)
.
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Split-Panel Jackknife

As an alternative to equation (A5) we can also form the following SPJ estimator

β̂spjI,J,T = 4β̂I,J,T − β̂I/2,J,T − β̂I,J/2,T − β̂I,J,T/2 ,

where β̂I/2,J,T denotes the half panel estimator based on splitting the panel by exporters.

This estimator also reduces the order of the bias in equation (A3) as we see from its

expected value

β̄spjI,J,T = Eφ[β̂spjI,J,T ] = 4β̄I,J,T − β̄I/2,J,T − β̄I,J/2,T − β̄I,J,T/2 (A7)

= β0

(
1− 1

IT
− 1

JT
− 1

IJ
+

2

IJT

)
.

Numerical Results

Table A1 shows numerical results for the uncorrected and the bias-corrected estimators

in finite samples, where we assume symmetry, i.e. I = J = N . The results demonstrate

that the bias corrections are effective in reducing the bias.

Table A1: Bias - Three-way Fixed Effects

N T (β̄I,J,T − β0)/β0 (β̄aI,J,T − β0)/β0 (β̄spjI,J,T − β0)/β0

10 10 -0.271 -0.052 -0.028
25 10 -0.171 -0.021 -0.009
25 25 -0.115 -0.009 -0.005
50 10 -0.136 -0.015 -0.004
50 25 -0.078 -0.004 -0.002
50 50 -0.059 -0.002 -0.001

B.1.2 Two-way Fixed Effects

In the following we briefly review the example with two-way fixed effects

yijt|λ,ψ ∼ N (λit + ψjt, β) .

Since it is a subcase of three-way fixed effects example, all previous results simplify by

dropping the terms that exhibit T .
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The uncorrected variance estimator is26

β̂I,J,T =
1

IJT

I∑
i=1

J∑
j=1

T∑
t=1

(yijt − ȳ·jt − ȳi·t + ȳ··t)
2

and the (degrees-of-freedom)-corrected variance estimator is

β̂corI,J,T =
IJ

(I − 1)(J − 1)
β̂I,J,T .

Taking the expected value yields

β̄I,J,T = Eα[β̂I,J,T ] = β0

(
(I − 1)2

IJ

)
(A8)

= β0

(
1− 1

I
− 1

J
+

1

IJ

)
.

Analytical Bias Correction

Based on equation (A8) we can form the following analytically bias-corrected estimator

β̃aI,J,T = β̂I,J,T

(
1 +

1

I
+

1

J

)
,

which has the expected value

β̄aI,J,T = Eα[β̃aI,J,T ] = β0

(
1− 3

IJ
+

1

I3
+

1

J3

)
.

26We draw on the appropriate demeaning formula for the two-way fixed effects model yijt = x′ijtβ +
λit + ψjt + uijt, which is given by zijt − z̄·jt − z̄i·t + z̄··t.
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Split-Panel Jackknife

A suitable split-panel jackknife estimator is

β̂spjI,J,T = 4β̂I,J,T − β̂I/2,J,T − β̂I,J/2,T ,

which has the expected value

β̄spjI,J,T = Eα[β̂spjI,J,T ] = 3β̄I,J,T − β̄I/2,J,T − β̄I,J/2,T

= β0

(
1− 1

IJ

)
.

Numerical Results

The numerical results in Table A2 demonstrate that the bias corrections work.

Table A2: Bias - Two-way Fixed Effects

N (β̄I,J,T − β0)/β0 (β̄aI,J,T − β0)/β0 (β̄spjI,J,T − β0)/β0

10 -0.190 -0.028 -0.010
25 -0.078 -0.005 -0.002
50 -0.040 -0.001 -0.000

100 -0.020 -0.000 -0.000

B.2 Asymptotic Bias Corrections

For the following expressions we draw on the results of Fernández-Val and Weidner

(2016), who have already derived the asymptotic distributions of the MLE estimators

for structural parameters and APEs in classical two-way fixed effects models based

on it-panels. As outlined in Cruz-Gonzalez, Fernández-Val, and Weidner (2017) the

bias corrections of Fernández-Val and Weidner (2016) can easily be adjusted to two-

way fixed effects models based on pseudo-panels with an ij-structure (i corresponds to

importer and j to exporter), and importer and exporter fixed effects. We give an intuitive

explanation. Since only J observations are informative per exporter fixed effects, we get

a bias of order J for including exporter fixed effects, and vice versa a bias of order I for

including importer fixed effects. Further, since there are no predetermined regressors in

an ij-structure, we get two symmetric bias terms
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B1,∞ = plimI,J→∞

[
− 1

2J

J∑
j=1

∑I
i=1 Eα[Hij∂η2Fij(MX)ij]∑I

i=1 Eα[ωij]

]
, (A9)

B2,∞ = plimI,J→∞

[
− 1

2I

I∑
i=1

∑J
j=1 Eα[Hij∂η2Fij(MX)ij]∑J

j=1 Eα[ωij]

]
, (A10)

where ωij is the ij-th diagonal entry of Ω, and M = IIJ − D(D′ΩD)−1D′Ω. ∂ι2g(·)
denotes the second order partial derivative of an arbitrary function g(·) with respect to

some parameter ι. The explicit expressions of Hijt and ∂η2Fijt are reported in Table 2.

Equations (A9) and (A10) are essentially D∞ from Fernández-Val and Weidner (2016)

with adjusted indices. The same adjustment can be transferred to the APEs.

In the following we apply the same logic to derive the asymptotic bias terms in our two-

and three-way error structure.

B.2.1 Two-way fixed effects

We get a bias of order J for including exporter-time fixed effects, since J observations

are informative per exporter-time fixed effect. In the same way we get a bias of order

I for including importer-time fixed effects. Similar to the case of the ij-structure of

Cruz-Gonzalez, Fernández-Val, and Weidner (2017) we get two symmetric bias terms

in the distributions of the structural parameters and the APEs, respectively, because

including predetermined regressors does not violate the strict exogeneity assumption.

Asymptotic distribution of β̂

√
IJ(β̂I,J,T − β0)→d W

−1

∞N (κB1,∞ + κ−1B2,∞,W∞), with (A11)

B1,∞ = plimI,J→∞

[
− 1

2J

T∑
t=1

J∑
j=1

∑I
i=1 Eα[Hijt∂η2Fijt(MX)ijt]∑I

i=1 Eα[ωijt]

]
,

B2,∞ = plimI,J→∞

[
− 1

2I

T∑
t=1

I∑
i=1

∑J
j=1 Eα[Hijt∂η2Fijt(MX)ijt]∑J

j=1 Eα[ωijt]

]
,

W∞ = plimI,J→∞

[
1

IJ

I∑
i=1

J∑
j=1

T∑
t=1

Eα[ωijt(MX)ijt(MX)′ijt]

]
,
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where
√
J/I → κ as I, J →∞.

Asymptotic distribution of δ̂

r(δ̂ − δ − I−1B
δ

1,∞ − J−1B
δ

2,∞)→d N (0,V∞), with (A12)

B
δ

1,∞ = plimI,J→∞

[
1

2JT

T∑
t=1

J∑
j=1

∑I
i=1−Eα[Hijt∂η2Fijt]Eα[(PΨ)ijt] + Eα[∂η2∆ijt]∑I

i=1 Eα[ωijt]

]
,

B
δ

2,∞ = plimI,J→∞

[
1

2IT

T∑
t=1

I∑
i=1

∑J
j=1−Eα[Hijt∂η2Fijt]Eα[(PΨ)ijt] + Eα[∂η2∆ijt]∑J

j=1 Eα[ωijt]

]
,

V
δ

∞ = plimI,J→∞
r2

I2J2T 2
Eα

[(
I∑
i=1

J∑
j=1

T∑
t=1

∆̄ijt

)(
I∑
i=1

J∑
j=1

T∑
t=1

∆̄ijt

)′
+

I∑
i=1

J∑
j=1

T∑
t=1

ΓijtΓ
′
ijt

]
,

where ∆̄ijt = ∆ijt−δ, ∆ijt = [∆1
ijt, . . . ,∆

m
ijt]
′, δ = [δ1, . . . , δm]′, δk = 1

IJT

∑I
i=1

∑J
j=1

∑T
t=1 ∆k

ijt,

Ψijt = ∂η∆ijt/ωijt, r is a convergence rate, and

Γijt =Eα

[
(IJ)−1

I∑
i=1

J∑
j=1

T∑
t=1

∂β∆ijt − (PX)ijt ∂η∆ijt

]′
W
−1

∞ Eα
[
(MX)ijt ωijtνijt

]

− Eα
[
(PΨ)ijt ∂η`ijt

]
.

∂ιg(·) denotes the first order partial derivative of an arbitrary function g(·) with respect

to some parameter ι. The expression V
δ

∞ can be modified by assuming that {λit}IT and

{ψjt}JT are independent sequences, and λit and ψjt are independent for all it, jt:

V
δ

∞ = plimI,J→∞
r2

I2J2T 2
Eα

(
I∑
i=1

T∑
t=1

J∑
j=1

J∑
r=1

∆̄ijt∆̄
′
irt +

J∑
j=1

T∑
t=1

I∑
i 6=p

∆̄ijt∆̄
′
pjt

+
I∑
i=1

J∑
j=1

T∑
t=1

ΓijtΓ
′
ijt

)
.

Bias-corrected estimators

The form of the bias suggests to separately split the panel by I and J , leading to the

following split-panel corrected estimator for the structural parameters:
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β̂
sp

= 3β̂I,J,T − β̂I/2,J,T − β̂I,J/2,T , with (A13)

β̂I/2,J,T =
1

2

[
β̂{i:i≤dI/2e},J,T + β̂{i:i≥bI/2+1c},J,T

]
,

β̂I,J/2,T =
1

2

[
β̂I,{j:j≤dJ/2e,T} + β̂I,{j:j≥bJ/2+1c,T}

]
,

where b·c and d·e denote the floor and ceiling functions. To clarify the notation, the

subscript {i : i ≤ dI/2e}, J, T denotes that the estimator is based on a subsample, which

contains all importers and time periods, but only the first half of all exporters.

In order to form the appropriate analytical bias correction, we make use of the asymptotic

distribution of the MLE, which we have described above. The analytical bias-corrected

estimator β̃a is formed from estimators of the leading bias terms that are subtracted

from the MLE of the full sample β̂I,J,T . More precisely:

β̃a = β̂I,J,T −
B̂β

1

I
− B̂β

2

J
, with B̂β

1 = Ŵ−1B̂1, B̂
β
2 = Ŵ−1B̂2, and

B̂1 = − 1

2JT

J∑
j=1

T∑
t=1

∑I
i=1 Ĥijt∂η2F̂ijt

(
M̂X

)
ijt∑I

i=1 ω̂ijt
,

B̂2 = − 1

2IT

I∑
i=1

T∑
t=1

∑J
j=1 Ĥijt∂η2F̂ijt

(
M̂X

)
ijt∑J

j=1 ω̂ijt
,

Ŵ =
1

IJT

I∑
i=1

J∑
j=1

T∑
t=1

ω̂ijt

(
M̂X

)
ijt

(
M̂X

)′
ijt
,

where ∂ι2g(·) denotes the second order partial derivative of an arbitrary function g(·)
with respect to some parameter ι. The explicit expressions of Hijt and ∂η2Fijt are re-

ported in Table 2.

The split-panel jackknife estimator works similarly with APEs as with structural parame-

ters. We simply replace in formula (A13) the estimators for the structural parameters

with estimators for the APEs. The following analytically bias-corrected estimator for the

APEs is formed based on the asymptotic distribution presented in Appendix B.2:
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δ̃a = δ̂ − B̂δ
1

I
− B̂δ

2

J
, with

B̂δ
1 =

1

2JT

J∑
j=1

T∑
t=1

∑I
i=1−Ĥijt∂η2F̂ijt

(
P̂Ψ̂
)
ijt

+ ∂η2∆̂ijt∑I
i=1 ω̂ijt

,

B̂δ
2 =

1

2IT

I∑
i=1

T∑
t=1

∑J
j=1−Ĥijt∂η2F̂ijt

(
P̂Ψ̂
)
ijt

+ ∂η2∆̂ijt∑J
j=1 ω̂ijt

.

The covariance can be estimated according to this simplified two-way fixed effects

counterpart of equation (14) in the main text:

V̂δ =
1

I2J2T 2

((
I∑
i=1

J∑
j=1

T∑
t=1

̂̄∆ijt

)(
I∑
i=1

J∑
j=1

T∑
t=1

̂̄∆ijt

)′
+

I∑
i=1

J∑
j=1

T∑
t=1

Γ̂ijtΓ̂
′
ijt

)
. (A14)

B.2.2 Three-way fixed effects

With the inclusion of pair fixed effects, we introduce an additional bias of order T , since

only T observations are informative per pair fixed effect. Another difference that occurs

in contrast to the two-way fixed effects case is that predetermined regressors lead to

a violation of the strict exogeneity assumption. To deal with this issue we adapt the

asymptotic bias terms B∞ and B
δ

∞ of Fernández-Val and Weidner (2016) to the new

structure.
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Conjectured asymptotic distribution of β̂

√
IJT (β̂I,J,T − β0)→d W

−1

∞N (κ1B1,∞ + κ2B2,∞ + κ3B3,∞,W∞), with

B1,∞ = plimI,J,T→∞

[
− 1

2JT

T∑
t=1

J∑
j=1

∑I
i=1 Eα[Hijt∂η2Fijt(MX)ijt]∑I

i=1 Eα[ωijt]

]
,

B2,∞ = plimI,J,T→∞

[
− 1

2IT

T∑
t=1

I∑
i=1

∑J
j=1 Eα[Hijt∂η2Fijt(MX)ijt]∑J

j=1 Eα[ωijt]

]
,

B3,∞ = plimI,J,T→∞

− 1

2IJ

I∑
i=1

J∑
j=1

(
T∑
t=1

Eα[ωijt]

)−1( T∑
t=1

Eα[Hijt∂η2Fijt(MX)ijt]

+2
T∑

τ=t+1

Eα[Hijt(Yijt − Fijt)ωijt(MX)ijt]

)]
,

W∞ = plimI,J,T→∞

[
1

IJT

I∑
i=1

J∑
j=1

T∑
t=1

Eα[ωijt(MX)ijt(MX)′ijt]

]
.

where κ1, κ2, κ3 are constants. The second term in the numerator of B3,∞ is dropped if

all regressors are assumed to be strictly exogenous.
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Conjectured asymptotic distribution of δ̂

r(δ̂ − δ − I−1B
δ

1,∞ − J−1B
δ

2,∞ − T−1B
δ

3,∞)→d N (0,V
δ

∞), with

B
δ

1,∞ = plimI,J,T→∞

[
1

2JT

T∑
t=1

J∑
j=1

∑I
i=1−Eα[Hijt∂η2Fijt]Eα[(PΨ)ijt] + Eα[∂η2∆ijt]∑I

i=1 Eα[ωijt]

]
,

B
δ

2,∞ = plimI,J,T→∞

[
1

2IT

T∑
t=1

I∑
i=1

∑J
j=1−Eα[Hijt∂η2Fijt]Eα[(PΨ)ijt] + Eα[∂η2∆ijt]∑J

j=1 Eα[ωijt]

]
,

B
δ

3,∞ = plimI,J,T→∞

 1

2IJ

I∑
i=1

J∑
j=1

(
T∑
t=1

Eα[ωijt]

)−1( T∑
t=1

−Eα[Hijt∂η2Fijt]Eα[(PΨ)ijt]

+Eα[∂η2∆ijt] + 2
T∑

τ=t+1

Eα[∂η`ijt−lωijt (MΨ)ijt]

)]
.

V
δ

∞ = plimI,J,T→∞
r2

I2J2T 2
Eα

[(
I∑
i=1

J∑
j=1

T∑
t=1

∆̄ijt

)(
I∑
i=1

J∑
j=1

T∑
t=1

∆̄ijt

)′

+
I∑
i=1

J∑
j=1

T∑
t=1

ΓijtΓ
′
ijt + 2

I∑
i=1

J∑
j=1

T∑
s>t

∆̄ijtΓ
′
ijs

]
,

Γijt = Eα

[
(IJT )−1

I∑
i=1

J∑
j=1

T∑
t=1

∂β∆ijt − (PX)ijt ∂η∆ijt

]′
W
−1

∞ Eα
[
(MX)ijt ωijtνijt

]

− Eα
[
(PΨ)ijt ∂η`ijt

]
,

and r is a convergence rate. The last term in the numerator of B3,∞ and V
δ

∞ are dropped

if all regressors are assumed to be strictly exogenous. The expression V
δ

∞ can be further

modified by assuming that {λit}IT , {ψjt}JT and {µij}IJ are independent sequences, and

λit, ψjt and µij are independent for all it, jt, ij:

V̂δ = plimI,J,T→∞
r2

I2J2T 2
Eα

(
I∑
i=1

T∑
t=1

J∑
j=1

J∑
r=1

∆̄ijt∆̄
′
irt +

J∑
j=1

T∑
t=1

I∑
i 6=p

∆̄ijt∆̄
′
pjt

+
I∑
i=1

J∑
j=1

T∑
s 6=t

∆̄ijt∆̄
′
ijs +

I∑
i=1

J∑
j=1

T∑
t=1

ΓijtΓ
′
ijt + 2

I∑
i=1

J∑
j=1

T∑
s>t

∆̄ijtΓ
′
ijs

)
,
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C Monte Carlo Results

C.1 Three-way Fixed Effects: Dynamic

This subsection provides the detailed results corresponding to the graphical representa-

tion and verbal discussion in Section 4 of the main text.

Table A3: Dynamic: Three-way FEs – x, N =
50

Coefficients APE

Bias Bias/SE SE/SD CP .95 Bias Bias/SE SE/SD CP .95

N = 50; T = 10

MLE 29.12 13.86 0.83 0.00 4.11 2.66 0.98 0.25
ABC (1) -0.44 -0.24 1.04 0.95 -0.84 -0.53 1.04 0.93
ABC (2) -0.60 -0.33 1.02 0.94 -0.97 -0.61 1.02 0.92
SPJ -14.13 -8.11 0.61 0.00 4.50 2.79 0.78 0.26

N = 50; T = 20

MLE 16.07 12.44 0.88 0.00 2.57 2.47 0.92 0.31
ABC (1) -0.12 -0.10 0.99 0.95 -0.15 -0.14 0.95 0.93
ABC (2) -0.27 -0.23 0.99 0.94 -0.26 -0.24 0.94 0.93
SPJ -4.78 -4.07 0.81 0.04 0.58 0.55 0.84 0.87

N = 50; T = 30

MLE 12.24 12.11 0.89 0.00 1.84 2.14 0.98 0.43
ABC (1) -0.10 -0.11 0.98 0.94 -0.06 -0.07 0.99 0.95
ABC (2) -0.23 -0.25 0.98 0.93 -0.16 -0.19 0.99 0.94
SPJ -2.86 -3.03 0.90 0.16 0.04 0.05 0.94 0.94

N = 50; T = 40

MLE 10.36 12.08 0.94 0.00 1.41 1.86 1.00 0.54
ABC (1) -0.14 -0.18 1.02 0.95 -0.06 -0.08 1.01 0.95
ABC (2) -0.25 -0.31 1.02 0.94 -0.16 -0.21 1.01 0.94
SPJ -2.14 -2.65 0.91 0.26 -0.13 -0.17 0.94 0.93

N = 50; T = 50

MLE 9.28 12.24 0.95 0.00 1.15 1.67 1.01 0.61
ABC (1) -0.16 -0.22 1.02 0.95 -0.06 -0.09 1.01 0.95
ABC (2) -0.25 -0.34 1.02 0.94 -0.14 -0.21 1.01 0.94
SPJ -1.78 -2.48 0.92 0.31 -0.18 -0.26 0.95 0.94

Table A4: Dynamic: Three-way FEs – x, N =
100

Coefficients APE

Bias Bias/SE SE/SD CP .95 Bias Bias/SE SE/SD CP .95

N = 100; T = 10

MLE 24.51 24.40 0.83 0.00 3.59 4.33 0.99 0.01
ABC (1) 0.39 0.43 1.00 0.93 -0.45 -0.54 1.02 0.91
ABC (2) 0.21 0.24 0.99 0.95 -0.58 -0.70 1.01 0.89
SPJ -8.49 -9.71 0.67 0.00 5.57 6.74 0.83 0.00

N = 100; T = 20

MLE 12.55 20.17 0.88 0.00 2.32 4.29 0.98 0.01
ABC (1) 0.21 0.35 0.97 0.93 0.03 0.06 0.99 0.95
ABC (2) 0.06 0.10 0.97 0.94 -0.07 -0.14 0.99 0.96
SPJ -2.72 -4.68 0.88 0.01 1.05 1.94 0.92 0.50

N = 100; T = 30

MLE 8.96 18.38 0.92 0.00 1.62 3.64 0.95 0.06
ABC (1) 0.09 0.19 0.98 0.94 0.04 0.10 0.95 0.94
ABC (2) -0.04 -0.08 0.98 0.95 -0.06 -0.14 0.95 0.94
SPJ -1.48 -3.19 0.91 0.14 0.31 0.70 0.91 0.87

N = 100; T = 40

MLE 7.27 17.56 0.92 0.00 1.25 3.21 0.98 0.12
ABC (1) 0.05 0.13 0.97 0.94 0.05 0.12 0.98 0.95
ABC (2) -0.05 -0.13 0.97 0.93 -0.05 -0.12 0.98 0.94
SPJ -0.97 -2.44 0.92 0.32 0.12 0.32 0.95 0.92

N = 100; T = 50

MLE 6.30 17.19 0.90 0.00 1.03 2.90 0.96 0.20
ABC (1) 0.05 0.13 0.95 0.92 0.05 0.14 0.96 0.94
ABC (2) -0.04 -0.13 0.95 0.93 -0.03 -0.09 0.96 0.94
SPJ -0.71 -2.00 0.91 0.49 0.06 0.16 0.93 0.93

Table A5: Dynamic: Three-way FEs – x, N =
150

Coefficients APE

Bias Bias/SE SE/SD CP .95 Bias Bias/SE SE/SD CP .95

N = 150; T = 10

MLE 23.14 35.04 0.83 0.00 3.45 5.84 0.94 0.00
ABC (1) 0.65 1.08 0.97 0.80 -0.35 -0.60 0.95 0.90
ABC (2) 0.47 0.79 0.96 0.87 -0.47 -0.82 0.94 0.87
SPJ -7.12 -12.24 0.67 0.00 5.81 10.11 0.78 0.00

N = 150; T = 20

MLE 11.45 27.94 0.92 0.00 2.24 6.00 0.94 0.00
ABC (1) 0.29 0.75 1.00 0.89 0.07 0.19 0.94 0.94
ABC (2) 0.15 0.38 1.00 0.94 -0.03 -0.08 0.94 0.93
SPJ -2.21 -5.73 0.89 0.00 1.17 3.14 0.88 0.15

N = 150; T = 30

MLE 7.96 24.76 0.92 0.00 1.58 5.14 0.91 0.00
ABC (1) 0.15 0.49 0.97 0.92 0.08 0.26 0.91 0.93
ABC (2) 0.03 0.09 0.97 0.94 -0.02 -0.07 0.91 0.94
SPJ -1.16 -3.74 0.89 0.05 0.40 1.31 0.87 0.71

N = 150; T = 40

MLE 6.34 23.20 0.94 0.00 1.24 4.60 0.96 0.01
ABC (1) 0.13 0.49 0.99 0.92 0.10 0.37 0.96 0.92
ABC (2) 0.02 0.09 0.99 0.95 0.01 0.03 0.96 0.94
SPJ -0.70 -2.66 0.94 0.25 0.20 0.76 0.93 0.86

N = 150; T = 50

MLE 5.35 22.13 0.96 0.00 1.00 4.08 0.92 0.03
ABC (1) 0.08 0.35 1.00 0.93 0.07 0.31 0.92 0.92
ABC (2) -0.01 -0.04 1.00 0.94 -0.01 -0.03 0.92 0.93
SPJ -0.51 -2.19 0.94 0.42 0.10 0.42 0.90 0.90
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Table A6: Dynamic: Three-way FEs – yt−1,
N = 50

Coefficients APE

Bias Bias/SE SE/SD CP .95 Bias Bias/SE SE/SD CP .95

N = 50; T = 10

MLE -61.77 -11.92 0.96 0.00 -70.30 -17.25 0.94 0.00
ABC (1) -5.58 -1.12 1.15 0.85 -6.57 -1.40 1.02 0.71
ABC (2) -7.22 -1.45 1.06 0.70 -8.24 -1.76 0.94 0.56
SPJ 24.96 5.08 0.78 0.01 -10.71 -2.14 0.87 0.43

N = 50; T = 20

MLE -26.96 -7.92 0.96 0.00 -36.61 -11.97 0.96 0.00
ABC (1) -3.17 -0.95 1.07 0.86 -3.34 -1.02 1.01 0.83
ABC (2) -1.03 -0.31 1.03 0.95 -1.07 -0.32 0.96 0.93
SPJ 4.66 1.41 0.90 0.71 -1.85 -0.55 0.88 0.88

N = 50; T = 30

MLE -15.77 -5.79 0.97 0.00 -24.44 -9.60 0.98 0.00
ABC (1) -2.11 -0.79 1.06 0.89 -2.14 -0.80 1.02 0.88
ABC (2) -0.12 -0.04 1.03 0.96 -0.03 -0.01 0.99 0.95
SPJ 1.89 0.71 0.95 0.88 -0.45 -0.17 0.92 0.93

N = 50; T = 40

MLE -10.46 -4.48 0.97 0.00 -18.41 -8.27 0.98 0.00
ABC (1) -1.72 -0.75 1.04 0.89 -1.70 -0.73 1.02 0.90
ABC (2) -0.02 -0.01 1.02 0.96 0.08 0.04 1.00 0.94
SPJ 0.89 0.39 0.96 0.92 -0.18 -0.08 0.95 0.94

N = 50; T = 50

MLE -7.39 -3.56 0.94 0.07 -14.86 -7.41 0.94 0.00
ABC (1) -1.54 -0.75 1.01 0.88 -1.51 -0.73 0.97 0.87
ABC (2) -0.10 -0.05 0.99 0.94 0.00 0.00 0.95 0.93
SPJ 0.27 0.13 0.94 0.93 -0.23 -0.11 0.91 0.92

Table A7: Dynamic: Three-way FEs – yt−1,
N = 100

Coefficients APE

Bias Bias/SE SE/SD CP .95 Bias Bias/SE SE/SD CP .95

N = 100; T = 10

MLE -62.99 -25.11 0.93 0.00 -70.36 -34.54 0.91 0.00
ABC (1) -6.44 -2.65 1.08 0.22 -7.87 -3.39 0.97 0.09
ABC (2) -7.99 -3.29 0.98 0.09 -9.44 -4.07 0.88 0.04
SPJ 21.28 8.82 0.76 0.00 -11.06 -4.51 0.82 0.02

N = 100; T = 20

MLE -29.01 -17.53 0.98 0.00 -36.61 -23.90 0.98 0.00
ABC (1) -3.49 -2.14 1.06 0.42 -3.81 -2.33 1.02 0.36
ABC (2) -1.37 -0.84 1.02 0.87 -1.57 -0.96 0.97 0.82
SPJ 4.24 2.61 0.91 0.28 -1.78 -1.07 0.90 0.79

N = 100; T = 30

MLE -18.28 -13.79 0.95 0.00 -24.65 -19.30 0.94 0.00
ABC (1) -2.48 -1.89 1.01 0.54 -2.61 -1.95 0.96 0.52
ABC (2) -0.51 -0.39 0.98 0.92 -0.54 -0.41 0.94 0.91
SPJ 1.83 1.40 0.93 0.70 -0.49 -0.36 0.90 0.90

N = 100; T = 40

MLE -13.00 -11.44 0.98 0.00 -18.58 -16.62 0.96 0.00
ABC (1) -1.94 -1.73 1.03 0.57 -2.02 -1.74 0.98 0.58
ABC (2) -0.28 -0.25 1.01 0.95 -0.27 -0.24 0.96 0.94
SPJ 1.01 0.90 0.96 0.84 -0.19 -0.17 0.92 0.92

N = 100; T = 50

MLE -9.85 -9.73 0.99 0.00 -14.89 -14.80 0.98 0.00
ABC (1) -1.59 -1.58 1.03 0.66 -1.64 -1.58 1.00 0.66
ABC (2) -0.17 -0.17 1.02 0.94 -0.16 -0.15 0.98 0.93
SPJ 0.63 0.63 0.97 0.90 -0.10 -0.09 0.93 0.93

Table A8: Dynamic: Three-way FEs – yt−1,
N = 150

Coefficients APE

Bias Bias/SE SE/SD CP .95 Bias Bias/SE SE/SD CP .95

N = 150; T = 10

MLE -63.56 -38.38 0.95 0.00 -70.53 -51.93 0.93 0.00
ABC (1) -6.90 -4.30 1.10 0.01 -8.49 -5.48 0.99 0.00
ABC (2) -8.44 -5.26 1.00 0.00 -10.05 -6.49 0.91 0.00
SPJ 20.03 12.55 0.78 0.00 -11.35 -6.93 0.84 0.00

N = 150; T = 20

MLE -29.71 -27.18 0.98 0.00 -36.66 -35.82 0.95 0.00
ABC (1) -3.65 -3.39 1.05 0.08 -4.03 -3.69 0.98 0.05
ABC (2) -1.55 -1.43 1.01 0.71 -1.80 -1.65 0.94 0.61
SPJ 4.07 3.78 0.93 0.06 -1.75 -1.58 0.89 0.62

N = 150; T = 30

MLE -19.05 -21.76 0.97 0.00 -24.71 -28.94 0.96 0.00
ABC (1) -2.60 -3.00 1.03 0.15 -2.77 -3.11 0.98 0.14
ABC (2) -0.65 -0.75 1.00 0.88 -0.72 -0.80 0.96 0.85
SPJ 1.76 2.04 0.94 0.48 -0.47 -0.52 0.91 0.90

N = 150; T = 40

MLE -13.81 -18.37 0.96 0.00 -18.63 -24.92 0.95 0.00
ABC (1) -2.04 -2.73 1.00 0.22 -2.14 -2.77 0.97 0.22
ABC (2) -0.39 -0.52 0.98 0.91 -0.41 -0.52 0.95 0.90
SPJ 0.98 1.31 0.94 0.72 -0.19 -0.25 0.91 0.92

N = 150; T = 50

MLE -10.71 -16.01 0.93 0.00 -14.97 -22.23 0.93 0.00
ABC (1) -1.70 -2.55 0.97 0.29 -1.77 -2.55 0.95 0.28
ABC (2) -0.29 -0.44 0.95 0.91 -0.29 -0.42 0.93 0.90
SPJ 0.57 0.85 0.91 0.84 -0.15 -0.21 0.89 0.92
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Table A9: Dynamic: Three-way FEs – x, N =
50 long-run

APE

Bias Bias/SE SE/SD CP .95

N = 50; T = 10

MLE -4.15 -2.88 0.97 0.19
ABC (1) -1.31 -0.85 1.02 0.87
ABC (2) -1.66 -1.08 1.00 0.80
SPJ 3.24 1.99 0.81 0.49

N = 50; T = 20

MLE -1.90 -1.91 0.93 0.53
ABC (1) -0.47 -0.45 0.94 0.92
ABC (2) -0.34 -0.33 0.94 0.92
SPJ 0.25 0.24 0.84 0.89

N = 50; T = 30

MLE -1.26 -1.51 0.99 0.67
ABC (1) -0.27 -0.32 1.00 0.94
ABC (2) -0.15 -0.18 0.99 0.95
SPJ -0.11 -0.13 0.94 0.94

N = 50; T = 40

MLE -1.01 -1.39 1.02 0.72
ABC (1) -0.24 -0.32 1.01 0.95
ABC (2) -0.15 -0.20 1.01 0.95
SPJ -0.24 -0.33 0.94 0.92

N = 50; T = 50

MLE -0.88 -1.32 1.04 0.74
ABC (1) -0.23 -0.34 1.04 0.95
ABC (2) -0.15 -0.23 1.04 0.95
SPJ -0.29 -0.43 0.96 0.92

Table A10: Dynamic: Three-way FEs – x, N =
100 long-run

APE

Bias Bias/SE SE/SD CP .95

N = 100; T = 10

MLE -4.62 -5.98 0.99 0.00
ABC (1) -1.06 -1.30 1.01 0.76
ABC (2) -1.40 -1.72 1.00 0.59
SPJ 4.14 4.93 0.86 0.01

N = 100; T = 20

MLE -2.06 -3.96 0.97 0.02
ABC (1) -0.32 -0.61 0.98 0.90
ABC (2) -0.19 -0.36 0.98 0.93
SPJ 0.78 1.44 0.90 0.67

N = 100; T = 30

MLE -1.38 -3.19 0.96 0.11
ABC (1) -0.21 -0.48 0.96 0.91
ABC (2) -0.10 -0.22 0.96 0.93
SPJ 0.21 0.48 0.91 0.91

N = 100; T = 40

MLE -1.06 -2.77 0.98 0.22
ABC (1) -0.16 -0.40 0.98 0.92
ABC (2) -0.06 -0.17 0.98 0.95
SPJ 0.07 0.17 0.94 0.93

N = 100; T = 50

MLE -0.86 -2.48 0.99 0.30
ABC (1) -0.12 -0.34 0.99 0.94
ABC (2) -0.04 -0.12 0.99 0.96
SPJ 0.01 0.03 0.95 0.94

Table A11: Dynamic: Three-way FEs – x, N =
150 long-run

APE

Bias Bias/SE SE/SD CP .95

N = 150; T = 10

MLE -4.76 -8.63 0.91 0.00
ABC (1) -1.03 -1.80 0.92 0.55
ABC (2) -1.37 -2.39 0.90 0.34
SPJ 4.33 7.35 0.80 0.00

N = 150; T = 20

MLE -2.10 -5.79 0.93 0.00
ABC (1) -0.31 -0.83 0.94 0.86
ABC (2) -0.18 -0.48 0.93 0.90
SPJ 0.91 2.43 0.89 0.33

N = 150; T = 30

MLE -1.39 -4.60 0.91 0.01
ABC (1) -0.19 -0.63 0.92 0.88
ABC (2) -0.08 -0.26 0.92 0.92
SPJ 0.31 1.02 0.87 0.78

N = 150; T = 40

MLE -1.03 -3.86 0.97 0.04
ABC (1) -0.12 -0.43 0.97 0.92
ABC (2) -0.03 -0.10 0.97 0.94
SPJ 0.16 0.60 0.93 0.89

N = 150; T = 50

MLE -0.85 -3.52 0.93 0.07
ABC (1) -0.11 -0.43 0.93 0.91
ABC (2) -0.03 -0.13 0.93 0.93
SPJ 0.07 0.27 0.90 0.91
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C.2 Two-way fixed effects

The simulations in this section correspond to a theory-consistent estimation of the

extensive margin outlined in Section 2 of the main text, taking into account unobserved

time-varying exporter- and importer-specific terms as well as dynamics, but not allowing

for bilateral unobserved heterogeneity. Specifically, we generate data according to

yijt = 1[βyyijt−1 + βxxijt + λit + ψjt ≥ εijt] ,

yij0 = 1[βxxij0 + λi0 + ψj0 ≥ εij0] ,

where i = 1, . . . , N , j = 1, . . . , N , t = 1, . . . , T , λit ∼ iid. N (0, 1/16), ψjt ∼ iid. N (0, 1/16),

and εijt ∼ iid. N (0, 1).27 Further, xijt = 0.5xijt−1 + λit + ψjt + νijt, where νijt ∼
iid. N (0, 0.5), xij0 ∼ iid. N (0, 1). To get an impression of how the different statis-

tics evolve with changing panel dimensions, we consider all possible combinations

of N ∈ {50, 100, 150} and T ∈ {10, 20, 30, 40, 50}. For each of these combinations we

generate 1, 000 samples.

27Since {λit}IT and {ψjt}JT are independent sequences, and λit and ψjt are independent for all it, jt,
we follow Fernández-Val and Weidner (2016) and incorporate this information in the covariance estimator
for the APEs. The explicit expression is provided in the Appendix B.2.
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Figure A3: Dynamic: Two-way Fixed Effects – Predetermined Regressor
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Figure A4: Dynamic: Two-way Fixed Effects – Exogenous Regressor
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Figure A5: Dynamic: Two-way Fixed Effects – Exogenous Regressor (Long-Run)
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Table A12: Dynamic: Two-way FEs – x, N =
50

Coefficients APE

Bias Bias/SE SE/SD CP .95 Bias Bias/SE SE/SD CP .95

N = 50; T = 10

MLE 4.86 3.10 0.95 0.14 -0.02 -0.01 0.96 0.94
ABC -0.21 -0.14 0.99 0.95 -0.14 -0.11 0.97 0.94
SPJ -0.85 -0.56 0.96 0.90 -0.20 -0.14 0.96 0.94

N = 50; T = 20

MLE 5.02 4.53 0.97 0.01 0.08 0.08 0.96 0.94
ABC -0.06 -0.05 1.01 0.95 -0.05 -0.05 0.97 0.94
SPJ -0.67 -0.62 0.97 0.90 -0.10 -0.10 0.95 0.94

N = 50; T = 30

MLE 4.94 5.46 0.96 0.00 0.06 0.08 0.93 0.94
ABC -0.13 -0.14 1.00 0.95 -0.07 -0.09 0.94 0.93
SPJ -0.72 -0.82 0.96 0.88 -0.12 -0.15 0.93 0.93

N = 50; T = 40

MLE 4.99 6.36 1.00 0.00 0.07 0.11 0.95 0.94
ABC -0.09 -0.11 1.04 0.96 -0.06 -0.08 0.96 0.95
SPJ -0.68 -0.90 1.03 0.86 -0.11 -0.15 0.94 0.94

N = 50; T = 50

MLE 4.98 7.09 0.97 0.00 0.07 0.12 0.91 0.92
ABC -0.10 -0.14 1.01 0.95 -0.05 -0.09 0.92 0.93
SPJ -0.70 -1.02 0.96 0.81 -0.11 -0.18 0.89 0.91

Table A13: Dynamic: Two-way FEs – x, N =
100

Coefficients APE

Bias Bias/SE SE/SD CP .95 Bias Bias/SE SE/SD CP .95

N = 100; T = 10

MLE 2.34 3.08 0.97 0.15 -0.02 -0.02 0.91 0.92
ABC -0.07 -0.09 0.99 0.95 -0.05 -0.06 0.91 0.92
SPJ -0.22 -0.29 0.98 0.94 -0.06 -0.08 0.91 0.92

N = 100; T = 20

MLE 2.38 4.42 1.01 0.00 0.01 0.02 0.94 0.94
ABC -0.03 -0.06 1.03 0.95 -0.02 -0.04 0.94 0.93
SPJ -0.17 -0.32 1.02 0.94 -0.03 -0.06 0.93 0.93

N = 100; T = 30

MLE 2.36 5.38 0.97 0.00 0.00 0.00 0.91 0.92
ABC -0.05 -0.10 0.99 0.95 -0.03 -0.06 0.91 0.93
SPJ -0.18 -0.41 0.96 0.92 -0.04 -0.09 0.90 0.92

N = 100; T = 40

MLE 2.39 6.29 0.98 0.00 0.02 0.05 0.90 0.92
ABC -0.02 -0.05 0.99 0.95 -0.01 -0.03 0.91 0.92
SPJ -0.15 -0.40 0.97 0.93 -0.02 -0.06 0.89 0.92

N = 100; T = 50

MLE 2.40 7.04 0.99 0.00 0.02 0.05 0.91 0.92
ABC -0.01 -0.04 1.01 0.95 -0.01 -0.03 0.91 0.92
SPJ -0.14 -0.43 0.99 0.92 -0.02 -0.06 0.90 0.92

Table A14: Dynamic: Two-way FEs – x, N =
150

Coefficients APE

Bias Bias/SE SE/SD CP .95 Bias Bias/SE SE/SD CP .95

N = 150; T = 10

MLE 1.57 3.13 0.99 0.12 0.01 0.01 0.89 0.93
ABC -0.01 -0.03 1.00 0.95 -0.00 -0.01 0.89 0.93
SPJ -0.07 -0.15 0.99 0.94 -0.01 -0.02 0.89 0.93

N = 150; T = 20

MLE 1.56 4.39 0.98 0.01 0.00 0.00 0.87 0.92
ABC -0.02 -0.06 0.99 0.95 -0.01 -0.03 0.87 0.92
SPJ -0.08 -0.21 0.97 0.94 -0.01 -0.04 0.87 0.91

N = 150; T = 30

MLE 1.55 5.35 0.98 0.00 -0.01 -0.02 0.86 0.91
ABC -0.03 -0.10 0.99 0.95 -0.02 -0.06 0.86 0.91
SPJ -0.08 -0.29 0.98 0.94 -0.02 -0.08 0.85 0.91

N = 150; T = 40

MLE 1.57 6.26 0.98 0.00 0.01 0.04 0.89 0.92
ABC -0.01 -0.03 0.99 0.94 -0.00 -0.00 0.89 0.92
SPJ -0.07 -0.26 0.98 0.94 -0.00 -0.02 0.89 0.92

N = 150; T = 50

MLE 1.57 6.98 1.01 0.00 0.00 0.02 0.91 0.92
ABC -0.01 -0.05 1.03 0.96 -0.01 -0.03 0.91 0.92
SPJ -0.07 -0.30 1.01 0.94 -0.01 -0.05 0.90 0.92
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Table A15: Dynamic: Two-way FEs – yt−1,
N = 50

Coefficients APE

Bias Bias/SE SE/SD CP .95 Bias Bias/SE SE/SD CP .95

N = 50; T = 10

MLE 4.83 1.10 0.95 0.78 -0.04 -0.01 0.95 0.93
ABC -0.24 -0.05 0.99 0.95 -0.18 -0.04 0.97 0.94
SPJ -0.93 -0.21 0.96 0.93 -0.28 -0.06 0.94 0.93

N = 50; T = 20

MLE 5.00 1.60 0.98 0.64 0.05 0.02 0.96 0.94
ABC -0.08 -0.03 1.02 0.96 -0.09 -0.03 0.98 0.95
SPJ -0.66 -0.21 1.00 0.95 -0.09 -0.03 0.96 0.95

N = 50; T = 30

MLE 4.90 1.92 0.94 0.51 0.01 0.00 0.94 0.94
ABC -0.17 -0.07 0.98 0.95 -0.13 -0.05 0.96 0.94
SPJ -0.74 -0.29 0.95 0.94 -0.13 -0.05 0.94 0.94

N = 50; T = 40

MLE 4.97 2.24 0.99 0.38 0.04 0.02 0.99 0.96
ABC -0.11 -0.05 1.03 0.96 -0.10 -0.04 1.01 0.96
SPJ -0.74 -0.34 1.00 0.94 -0.15 -0.07 0.99 0.95

N = 50; T = 50

MLE 4.85 2.45 0.98 0.32 -0.06 -0.03 0.97 0.94
ABC -0.22 -0.11 1.02 0.95 -0.19 -0.10 0.98 0.95
SPJ -0.78 -0.40 1.01 0.93 -0.19 -0.10 0.97 0.95

Table A16: Dynamic: Two-way FEs – yt−1,
N = 100

Coefficients APE

Bias Bias/SE SE/SD CP .95 Bias Bias/SE SE/SD CP .95

N = 100; T = 10

MLE 2.44 1.14 1.03 0.80 0.08 0.04 1.04 0.95
ABC 0.03 0.01 1.05 0.95 0.05 0.02 1.04 0.96
SPJ -0.10 -0.05 1.04 0.95 0.06 0.03 1.04 0.95

N = 100; T = 20

MLE 2.35 1.54 0.98 0.66 -0.03 -0.02 0.99 0.94
ABC -0.06 -0.04 1.00 0.94 -0.06 -0.04 1.00 0.95
SPJ -0.19 -0.13 0.99 0.94 -0.06 -0.04 0.99 0.94

N = 100; T = 30

MLE 2.39 1.92 0.97 0.52 0.03 0.02 0.99 0.95
ABC -0.02 -0.02 0.99 0.95 -0.00 -0.00 0.99 0.95
SPJ -0.14 -0.11 0.96 0.94 -0.00 -0.00 0.97 0.95

N = 100; T = 40

MLE 2.38 2.20 0.97 0.41 0.00 0.00 0.97 0.94
ABC -0.03 -0.03 0.99 0.95 -0.03 -0.03 0.98 0.94
SPJ -0.16 -0.15 0.98 0.94 -0.03 -0.03 0.97 0.94

N = 100; T = 50

MLE 2.40 2.48 0.98 0.29 0.02 0.02 0.97 0.94
ABC -0.01 -0.01 1.00 0.95 -0.01 -0.01 0.98 0.95
SPJ -0.14 -0.15 0.97 0.93 -0.02 -0.02 0.96 0.93

Table A17: Dynamic: Two-way FEs – yt−1,
N = 150

Coefficients APE

Bias Bias/SE SE/SD CP .95 Bias Bias/SE SE/SD CP .95

N = 150; T = 10

MLE 1.55 1.09 0.99 0.81 -0.01 -0.01 0.99 0.94
ABC -0.03 -0.02 1.00 0.95 -0.02 -0.02 0.99 0.94
SPJ -0.08 -0.06 0.99 0.95 -0.02 -0.01 0.98 0.94

N = 150; T = 20

MLE 1.56 1.55 0.97 0.67 -0.00 -0.00 0.96 0.94
ABC -0.02 -0.02 0.98 0.94 -0.01 -0.01 0.96 0.94
SPJ -0.07 -0.07 0.97 0.94 -0.01 -0.01 0.96 0.94

N = 150; T = 30

MLE 1.60 1.94 1.00 0.51 0.04 0.04 0.99 0.94
ABC 0.01 0.02 1.01 0.94 0.02 0.03 1.00 0.94
SPJ -0.04 -0.05 1.01 0.94 0.02 0.02 0.99 0.94

N = 150; T = 40

MLE 1.55 2.17 0.99 0.42 -0.01 -0.02 0.97 0.94
ABC -0.03 -0.05 1.01 0.95 -0.03 -0.04 0.97 0.94
SPJ -0.09 -0.13 0.99 0.94 -0.03 -0.04 0.96 0.94

N = 150; T = 50

MLE 1.54 2.42 1.00 0.32 -0.02 -0.03 0.98 0.95
ABC -0.04 -0.06 1.01 0.96 -0.04 -0.05 0.98 0.95
SPJ -0.09 -0.15 1.00 0.96 -0.04 -0.06 0.97 0.95
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Table A18: Dynamic: Two-way FEs – x, N =
50 long-run

APE

Bias Bias/SE SE/SD CP .95

N = 50; T = 10

MLE -0.40 -0.30 0.97 0.93
ABC -0.18 -0.14 0.96 0.94
SPJ -0.26 -0.19 0.95 0.93

N = 50; T = 20

MLE -0.30 -0.32 1.00 0.94
ABC -0.09 -0.09 0.99 0.95
SPJ -0.15 -0.16 0.97 0.95

N = 50; T = 30

MLE -0.32 -0.41 0.97 0.92
ABC -0.11 -0.14 0.96 0.94
SPJ -0.18 -0.23 0.93 0.93

N = 50; T = 40

MLE -0.30 -0.45 1.00 0.93
ABC -0.09 -0.14 0.99 0.95
SPJ -0.16 -0.24 0.97 0.94

N = 50; T = 50

MLE -0.31 -0.52 0.92 0.90
ABC -0.10 -0.16 0.92 0.93
SPJ -0.18 -0.29 0.88 0.91

Table A19: Dynamic: Two-way FEs – x, N =
100 long-run

APE

Bias Bias/SE SE/SD CP .95

N = 100; T = 10

MLE -0.20 -0.27 0.95 0.93
ABC -0.05 -0.06 0.94 0.94
SPJ -0.06 -0.08 0.94 0.94

N = 100; T = 20

MLE -0.19 -0.35 0.96 0.93
ABC -0.03 -0.06 0.95 0.94
SPJ -0.05 -0.09 0.94 0.94

N = 100; T = 30

MLE -0.19 -0.43 0.95 0.92
ABC -0.03 -0.07 0.94 0.94
SPJ -0.05 -0.11 0.93 0.93

N = 100; T = 40

MLE -0.18 -0.47 0.94 0.91
ABC -0.02 -0.06 0.93 0.94
SPJ -0.03 -0.09 0.92 0.94

N = 100; T = 50

MLE -0.17 -0.51 0.95 0.91
ABC -0.02 -0.05 0.94 0.93
SPJ -0.03 -0.09 0.93 0.93

Table A20: Dynamic: Two-way FEs – x, N =
150 long-run

APE

Bias Bias/SE SE/SD CP .95

N = 150; T = 10

MLE -0.13 -0.22 0.93 0.93
ABC -0.01 -0.02 0.93 0.94
SPJ -0.02 -0.03 0.92 0.93

N = 150; T = 20

MLE -0.13 -0.33 0.91 0.91
ABC -0.02 -0.04 0.91 0.93
SPJ -0.02 -0.05 0.90 0.93

N = 150; T = 30

MLE -0.13 -0.41 0.89 0.91
ABC -0.02 -0.06 0.89 0.92
SPJ -0.03 -0.08 0.88 0.92

N = 150; T = 40

MLE -0.12 -0.42 0.92 0.91
ABC -0.01 -0.02 0.91 0.92
SPJ -0.01 -0.04 0.91 0.92

N = 150; T = 50

MLE -0.13 -0.51 0.92 0.89
ABC -0.01 -0.06 0.92 0.92
SPJ -0.02 -0.07 0.91 0.91
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C.3 Static: Three-way Fixed Effects

yijt = 1[βxijt + λit + ψjt + µij ≥ εijt] ,

where λit ∼ iid. N (0, 1/24), ψjt ∼ iid. N (0, 1/24), µij ∼ iid. N (0, 1/24), and εijt ∼
iid. N (0, 1). Further, xijt = 0.5xijt−1 + λit + ψjt + µij + νijt, where νijt ∼ iid. N (0, 0.5),

xij0 ∼ iid. N (0, 1).

Table A21: Static: Three-way FEs – x, N = 50

Coefficients APE

Bias Bias/SE SE/SD CP .95 Bias Bias/SE SE/SD CP .95

N = 50; T = 10

MLE 21.50 11.16 0.85 0.00 0.99 0.72 0.93 0.86
ABC -1.46 -0.84 1.02 0.87 -1.33 -0.92 1.00 0.84
SPJ -11.69 -7.10 0.69 0.00 -0.35 -0.24 0.80 0.88

N = 50; T = 20

MLE 12.15 10.11 0.89 0.00 0.39 0.42 1.00 0.93
ABC -0.59 -0.53 0.99 0.91 -0.45 -0.47 1.04 0.92
SPJ -3.99 -3.60 0.85 0.10 -0.65 -0.68 0.91 0.87

N = 50; T = 30

MLE 9.51 10.07 0.90 0.00 0.27 0.36 0.98 0.94
ABC -0.40 -0.44 0.98 0.93 -0.25 -0.32 1.00 0.94
SPJ -2.34 -2.63 0.91 0.28 -0.45 -0.58 0.93 0.90

N = 50; T = 40

MLE 8.36 10.40 0.95 0.00 0.24 0.37 1.03 0.93
ABC -0.24 -0.32 1.02 0.94 -0.15 -0.22 1.04 0.95
SPJ -1.65 -2.17 0.94 0.42 -0.31 -0.47 0.96 0.92

N = 50; T = 50

MLE 7.60 10.70 0.93 0.00 0.19 0.31 1.05 0.95
ABC -0.23 -0.34 0.99 0.94 -0.14 -0.23 1.06 0.95
SPJ -1.39 -2.05 0.93 0.44 -0.28 -0.46 0.97 0.92

Table A22: Static: Three-way FEs – x, N = 100

Coefficients APE

Bias Bias/SE SE/SD CP .95 Bias Bias/SE SE/SD CP .95

N = 100; T = 10

MLE 17.62 19.04 0.86 0.00 0.56 0.79 1.01 0.88
ABC -0.86 -1.02 1.01 0.83 -1.05 -1.44 1.05 0.71
SPJ -8.01 -9.78 0.73 0.00 0.46 0.62 0.87 0.87

N = 100; T = 20

MLE 9.12 15.69 0.90 0.00 0.22 0.47 1.00 0.92
ABC -0.29 -0.53 0.97 0.91 -0.27 -0.57 1.02 0.92
SPJ -2.42 -4.41 0.88 0.01 -0.24 -0.49 0.93 0.90

N = 100; T = 30

MLE 6.68 14.60 0.96 0.00 0.13 0.33 1.00 0.94
ABC -0.18 -0.40 1.01 0.94 -0.14 -0.36 1.01 0.94
SPJ -1.22 -2.77 0.94 0.22 -0.18 -0.46 0.95 0.91

N = 100; T = 40

MLE 5.51 14.18 0.95 0.00 0.08 0.24 0.99 0.95
ABC -0.14 -0.37 1.00 0.94 -0.10 -0.30 0.99 0.93
SPJ -0.81 -2.14 0.95 0.44 -0.15 -0.44 0.95 0.91

N = 100; T = 50

MLE 4.85 14.10 0.91 0.00 0.06 0.21 0.99 0.94
ABC -0.11 -0.32 0.95 0.92 -0.07 -0.24 1.00 0.94
SPJ -0.60 -1.78 0.90 0.56 -0.12 -0.38 0.95 0.93

Table A23: Static: Three-way FEs – x, N = 150

Coefficients APE

Bias Bias/SE SE/SD CP .95 Bias Bias/SE SE/SD CP .95

N = 150; T = 10

MLE 16.39 26.88 0.88 0.00 0.41 0.84 0.99 0.86
ABC -0.73 -1.29 1.02 0.76 -1.01 -2.01 1.02 0.49
SPJ -7.12 -13.07 0.73 0.00 0.63 1.24 0.85 0.73

N = 150; T = 20

MLE 8.16 21.28 0.97 0.00 0.18 0.54 1.02 0.92
ABC -0.22 -0.60 1.04 0.92 -0.24 -0.72 1.03 0.89
SPJ -2.06 -5.66 0.91 0.00 -0.15 -0.45 0.92 0.90

N = 150; T = 30

MLE 5.78 19.17 0.97 0.00 0.10 0.37 1.01 0.95
ABC -0.12 -0.41 1.02 0.94 -0.11 -0.41 1.02 0.94
SPJ -0.98 -3.36 0.95 0.09 -0.13 -0.47 0.97 0.92

N = 150; T = 40

MLE 4.64 18.08 0.97 0.00 0.05 0.22 1.03 0.94
ABC -0.10 -0.40 1.01 0.93 -0.08 -0.36 1.03 0.94
SPJ -0.62 -2.46 0.96 0.32 -0.11 -0.46 0.99 0.92

N = 150; T = 50

MLE 4.01 17.65 1.01 0.00 0.05 0.24 1.01 0.95
ABC -0.06 -0.27 1.05 0.95 -0.05 -0.22 1.01 0.95
SPJ -0.42 -1.89 0.98 0.53 -0.07 -0.36 0.97 0.92
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Table A24: Probit Estimation: Coefficients

Dependent variable: yijt

(1) (2) (3) (4) (5)

lagged DV - - 1.664∗∗∗ - 1.142∗∗∗

(-) (-) (0.004) (-) (0.005)
- - 1.719∗∗∗ - 1.057∗∗∗

(-) (-) (0.005) (-) (0.005)
log(Distance) - -0.800∗∗∗ -0.528∗∗∗ - -

(-) (0.003) (0.004) (-) (-)
-0.656∗∗∗ -0.821∗∗∗ -0.546∗∗∗ - -
(0.003) (0.003) (0.004) (-) (-)

Land border - 0.207∗∗∗ 0.118∗∗∗ - -
(-) (0.016) (0.018) (-) (-)

0.260∗∗∗ 0.214∗∗∗ 0.124∗∗∗ - -
(0.014) (0.016) (0.018) (-) (-)

Legal - 0.137∗∗∗ 0.089∗∗∗ - -
(-) (0.004) (0.005) (-) (-)

0.090∗∗∗ 0.141∗∗∗ 0.093∗∗∗ - -
(0.004) (0.004) (0.005) (-) (-)

Language - 0.426∗∗∗ 0.280∗∗∗ - -
(-) (0.006) (0.007) (-) (-)

0.380∗∗∗ 0.436∗∗∗ 0.289∗∗∗ - -
(0.005) (0.006) (0.007) (-) (-)

Colonial ties - 0.657∗∗∗ 0.487∗∗∗ - -
(-) (0.031) (0.036) (-) (-)

0.190∗∗∗ 0.702∗∗∗ 0.542∗∗∗ - -
(0.020) (0.032) (0.037) (-) (-)

Currency union - 0.631∗∗∗ 0.424∗∗∗ 0.303∗∗∗ 0.214∗∗∗

(-) (0.015) (0.017) (0.032) (0.034)
0.381∗∗∗ 0.649∗∗∗ 0.443∗∗∗ 0.335∗∗∗ 0.255∗∗∗

(0.012) (0.015) (0.017) (0.032) (0.034)
FTA - 0.543∗∗∗ 0.359∗∗∗ 0.074∗ 0.038

(-) (0.019) (0.021) (0.038) (0.041)
0.508∗∗∗ 0.552∗∗∗ 0.364∗∗∗ 0.072∗ 0.033
(0.017) (0.020) (0.022) (0.038) (0.040)

WTO - 0.152∗∗∗ 0.101∗∗∗ 0.052∗∗∗ 0.039∗∗

(-) (0.008) (0.009) (0.016) (0.017)
0.286∗∗∗ 0.154∗∗∗ 0.104∗∗∗ 0.058∗∗∗ 0.048∗∗∗

(0.005) (0.008) (0.009) (0.016) (0.017)

Fixed effects i, j, t it, jt it, jt it, jt, ij it, jt, ij
Sample size 1204671 1204671 1171794 1204671 1171794
Deviance 8.891×105 7.019×105 5.183×105 4.76×105 4.189×105

Notes: Column (1) uncorrected coefficients, columns (2) - (5) bias-corrected coefficients
(bold font) and uncorrected coefficients (standard font). Column (5) bias-corrected with L =
2. Standard errors in parenthesis. ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1
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Table A25: Logit Estimation with Different Bandwidths: Bias-Corrected Average Partial Effects

Dependent variable: yijt

L = 1 L = 2 L = 3 L = 4

direct long-run direct long-run direct long-run direct long-run

lagged DV 0.163∗∗∗ - 0.168∗∗∗ 0.171∗∗∗ 0.172∗∗∗ -
(0.032) (-) (0.033) (0.034) (0.034) (-)

Currency union 0.027∗∗∗ 0.041∗∗∗ 0.027∗∗∗ 0.041∗∗∗ 0.027∗∗∗ 0.041∗∗∗ 0.027∗∗∗ 0.041∗∗∗

(0.006) (0.009) (0.006) (0.009) (0.006) (0.009) (0.006) (0.009)
FTA 0.004 0.007 0.004 0.007 0.005 0.008 0.005 0.008

(0.004) (0.006) (0.004) (0.006) (0.004) (0.006) (0.004) (0.006)
WTO 0.005∗∗∗ 0.008∗∗∗ 0.005∗∗∗ 0.008∗∗∗ 0.006∗∗∗ 0.009∗∗∗ 0.006∗∗∗ 0.009∗∗∗

(0.002) (0.003) (0.002) (0.003) (0.002) (0.003) (0.002) (0.003)

Notes: All columns include Origin × Year, Destination × Year and Origin × Destination fixed effects. Standard
errors in parenthesis. ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1
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