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Abstract

In this paper, I focus on monetary incentives for the energy transition in the
residential sector. I study how di�erent design choices a�ect the uptake of the
technology, its siting, and therefore the cost-e�ectiveness of the decarbonization
e�ort. I analyze two design choices in particular: (i) whether to pay the incentive
per system installed (system-based incentive) or per kWh of electricity generated
(output-based incentive), and (ii) whether to provide the incentive upfront or
through payments delayed over a longer time frame. To assess these alternatives,
I estimate the responsiveness of the demand for residential solar PV with respect
to feed-in tari� (FIT) payments and with respect to installation costs in an
empirical setting and look at how households trade o� upfront installation cost
and future FIT payments to obtain their implicit time discount rate. Finally, I
calculate the cost per kWh generated and per emission reductions of the policy.
In general, I �nd that households discount heavily future monetary bene�ts and
have a high elasticity of demand to the incentive, so that a hybrid design that
links the incentive to the output but is paid upfront would be more cost-e�ective
than rebates and FITs. As budgetary and distributional concerns around green
incentives are being discussed, rigorous assessments of these policies and their
design is urgent. By learning from past experience we can improve future policy
design in the energy sector and beyond.
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1 Introduction

A rich variety of policy tools has been used around the world to support the uptake of resi-

dential solar photovoltaic (PV) to help decarbonize the grid. While the literature has mainly

focused on determining the optimal level of incentives and their schedule over time (Langer

and Lemoine, 2018; van Benthem et al., 2008) or on identifying the impact of given poli-

cies (De Groote and Verboven, 2019; Pless and van Benthem, 2019; Hughes and Podolefsky,

2015), less has been done on how di�erent design choices a�ect the uptake of the technology,

the siting of the systems, and therefore the cost-e�ectiveness of the decarbonization e�ort.

In this paper, I analyze two features that policymakers have to consider when designing an

incentive for residential PV: (i) whether to pay per system installed (system-based incen-

tive) or per electricity generated (output-based incentive), and (ii) whether to provide the

incentive upfront or through payments delayed over time. Common incentive schemes such

as rebates and feed-in tari�s (FITs) use opposite combinations of these features. Rebates

decrease the upfront cost of installing a system, while a FIT pays the PV owner over time for

the electricity that their system generates and transfers to the grid. Di�erent combinations

of these features are nevertheless possible, and, depending on the elasticity and time dis-

counting parameters, might even have advantages over the existing policies. To assess this

possibility, I set up a model of the household decision to install a PV system, and empirically

estimate the parameters of interest using data from the UK FIT, a scheme with wide vari-

ations in the amount of incentives o�ered and other characteristics that make identi�cation

feasible.

I use a reduced-form speci�cation to obtain the responsiveness of demand for residential

PV with respect to the FIT payments and with respect to the installation cost. As upfront

system-based incentives are e�ectively a discount on the installation cost, changing the sign

of the latter provides the responsiveness to this type of incentives. To assess the choice of

system-based or output-based incentives, I then construct an hypothetical payment scheme

that is identical to the existing FIT in terms of schedule over time and frequency and duration
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of the payments, but pays a �xed amount per system rather than an output-dependent

amount (set to be revenue neutral for comparability). Fitting the estimated parameters

to this new variable and to the existing FIT, I predict the number and location of PV

systems that would be installed under each design, net of the installations that would have

occurred even without incentives. I also look at the role that covariates play in shaping the

distribution of PV systems over the country. To isolate the role of the second feature of

interest, I �rst look at how households trade o� the upfront installation cost and the future

FIT payments, obtaining the implicit time discount rate of households needed to compare

the cost-e�ectiveness of upfront as opposed to periodic payments. Finally, I calculate the cost

of the additional kWh generated (i.e., net of adoptions that would have occurred anyway)

and the emission reductions.

The paper contributes to the economic literature on technology adoption, policy design,

integration of renewables and the transition to a low-carbon economy and energy sector, and

discusses practical policy alternatives to improve cost-e�ectiveness of renewables incentives,

given budgetary pressure. As many incentive schemes for PVs are being phased out citing

high cost and regressivity concerns, assessing the cost-e�ectiveness of these programs and

ways to improve them is extremely relevant for policy and to inform future incentive designs.

A review of the key literature of interest with a focus on residential PV is included in

Section 2. Section 3 presents the policy background and the data, while Section 4 introduces

the theoretical framework of reference, on which the estimation approach in Section 5 is

based. Section 6 discusses the results and Section 7 concludes with policy implications.

2 Main literature of reference

This research builds on a growing body of literature investigating the demand for residential

solar PV systems and the e�ectiveness of incentives for their adoption, with applications

mainly to the US, and most frequently California � De Groote and Verboven (2019) on
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Flanders being a notable exception. The Flemish incentive scheme consists of a mix of

output-based subsidies � similar to the UK scheme � and net metering � which is instead

absent in the UK. In the US, support for residential solar systems is o�ered at the federal

level through a tax credit for around 30% of the system cost. This is complemented by

state-speci�c schemes, usually consisting of some form of subsidies and net metering. Under

the California Solar Initiative (CSI) General Market Program, for example, residential solar

PV owners can choose between an output-based subsidy called Performance Based Incentive

paid monthly for 5 years, or an upfront lump-sum payment called Expected Performance-

Based Buydown � with the vast majority choosing the latter (Hughes and Podolefsky, 2015).

Although classi�ed as a capacity-based subsidy, the Expected Performance-Based Buydown

is actually adjusted depending on the expected generation of the solar array, calculated taking

into account the characteristics of the system and the roof, as well as the solar insolation

of the location where it is installed. In the paper, I draw comparisons between the results

reported by the literature on the CSI and the results obtained here for the UK, and discuss

the strengths and weaknesses of each policy design.

The literature looking at the microeconomics of residential solar subsidies may be clas-

si�ed according to two main approaches � reduced-form models and static estimates on one

side, and dynamic decision-making problems employing structural models on the other.

Among the works in the �rst strand, Hughes and Podolefsky (2015) and Pless and van

Benthem (2019) focus on the California Solar Initiative, using di�erent empirical strategies.

Hughes and Podolefsky (2015) exploit the di�erence in rebate amounts o�ered by di�erent

utilities to identify the e�ects of the rebate. As each utility serves a di�erent territory, the

boundaries of the catchment areas provide the discontinuity needed for identi�cation. This is

combined with time �xed e�ects and utility-speci�c time-varying �xed e�ects to control for

unobservables that might bias the estimates. Allowing the elasticity parameter to vary, they

�nd that a 0.10 USD (6%) increase in the rebate rate results in 20% more installations in

the early periods of the policy, but this e�ects decreases to 8% in later times, corresponding
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to an average elasticity of -1.2. They estimate that the cost of the policy is 0.06 USD/kWh

generated. Pless and van Benthem (2019) focus instead on the pass-through of the CSI

rebate that is paid to the installers rather than to the end-users, and in their analysis they

estimate a price elasticity of demand for solar panels of -0.85. Another important work to

mention for its methodological as well as empirical contribution, is Gillingham and Tsvetanov

(2019). The authors estimate the demand for residential PV in Connecticut, where systems

are eligible for upfront rebates, and �nd a price elasticity of -0.65. Their estimation approach

addresses three main issues that commonly arise in this type of analyses, namely the use of

a count outcome variable with excess zeros, unobserved heterogeneity, and endogeneity of

the main regressor - the price of the PV installation. They present two models that can be

used in this situation � an instrumental variable (IV) Poisson model with �xed e�ects, and a

IV Poisson-hurdle model with �xed e�ects � and show how to obtain a consistent estimator

to estimate the parameters.

Among the structural models, again focusing on California, van Benthem et al. (2008)

build an inter-temporal model to derive the optimal solar subsidy schedule in California,

in the presence of environmental externalities and unappropriated learning-by-doing, and

�nd that the existing incentive schemes in the state are very close to the model's optimum,

while without learning-by-doing, environmental externalities alone cannot justify the high

levels of subsidy. Burr (2016) analyses di�erent types of incentives, concluding that upfront

subsidies tend to result in more installations, but output-based subsidies are more e�cient.

She also notes that sub-optimal siting of residential PV results in high welfare cost. Langer

and Lemoine (2018) estimate what the e�cient subsidy schedule looks like when taking into

account expectations about future subsidy and technology cost. Bollinger and Gillingham

(2019) use a dynamic model of demand and supply to investigate the role of a rebate paid

through the installers in fostering learning-by-doing in the industry. Allowing the elasticity to

vary over time, they �nd values between -1.2 and -0.8, consistent with results from previous

reduced-form analysis. In a recent working paper, Snashall-Woodhams (2019) uses highly
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disaggregated data on electricity consumption and estimates of solar generation potential at

the rooftop level to model households' choice to adopt solar and compare the CSI with an

optimally targeted subsidy. He �nds that households discount heavily future bene�ts from

solar, estimating an annual discount factor of about 82%. Finally, De Groote and Verboven

(2019) use variation in subsidies for residential PV in the Flanders, Belgium, and a detailed

structural model to identify the discount rate users appear to employ when choosing whether

to install residential solar. As in the paper on California, they �nd the annual discount rate

to be very high at 15% (equivalent to an annual discount factor of 0.86), and conclude that

in cases in which the agents are myopic or discount heavily the future for other reasons,

upfront subsidies are more cost-e�ective.

On the issue of siting and geographical distribution of residential solar, it is worth men-

tioning recent work by Sexton et al. (2018), estimating the e�ects of solar electricity gener-

ation on averted pollution damages and on grid congestion, and how they vary over the US

territory. They �nd substantial heterogeneity and spillovers across states, and conclude that

incentives could be made more e�cient and more environmental bene�ts could be achieved

by better linking the level of subsidies to the location-speci�c outcome.

3 Policy background and data

The empirical setting chosen to answer the research question is the UK FIT scheme for

residential PV, which was in place between 2010 and 2019. When a household installed a

PV system during this period, they were assigned a FIT rate per kWh generated and this rate

is paid for 20 years, indexed for in�ation. The reason for this choice of setting is that this is a

purely output-based design, where households are paid periodically for each kWh generated

in the period, no matter whether the electricity is then self-consumed or transferred into

the grid, and with no net-metering (McKenna et al., 2018).1 This simpli�es the modeling

1While production and export to the grid are measured and rewarded separately for higher capacity bands,
separate meters are not generally available in the residential sector and the policy simply assumes that 50%
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and data requirement to isolate the e�ects of interest, and allows me to focus solely on the

household decision to install a system without modelling the decisions of how much energy

to consume and how much to export. The second reason for this choice is that the FIT rate

changed multiple times every year, providing useful variation to identify the parameters and

remove seasonality e�ects. Quoting the sustained decrease in capital costs of solar PVs as

the main rationale, the FIT rate has in fact been repeatedly adjusted downward, from 43.3

in 2010 to 3.79 at the beginning of 2019.2 It is to be noted that changes in the rate only

a�ect new applicants, while nothing changes for households who have already installed.

While the rate per kWh generated is �xed across the country at a given time (Figure

1.a), the actual FIT payments the household receives depend on how much their system

generates, which is determined by the generation potential of the location where the system

is installed and by contextual weather conditions (Figure 1.b; see also Section 4). The

total amount of incentives o�ered, obtained as the product of the FIT rate and of the

electricity generated, therefore varies both over time and space (Figure 1.c). As an example,

a household that installs a system in the South-West in 2013 receives higher FIT payments

than a household that installs at the same time in the North, because of the di�erence in

solar irradiation, cloudy days and overall generation potential of the areas; at the same time

their FIT payments will be lower than those of a household who installed a system in the

same area but in 2011, because systems installed in earlier years receive a higher rate for

each kWh generated.3

For the empirical analysis I compile a novel dataset from several sources. The unit of

observation is the Middle-Layer Super Output Area (MSOA), a statistical construct de-

veloped within the UK census to ensure within-homogeneity and between-comparability of

of the household generation is exported, e�ectively linking the payment only to the energy generated and
abstracting from energy consumption decisions.

2The budget for the scheme comes from the general electricity bills of all energy suppliers' customers �
as it is the case for other energy-related schemes in the country � and high costs and distributional equity
concerns were cited as main arguments behind the closure of the scheme in 2019.While distributional issues
are not covered in this paper, I refer to Grover and Daniels (2017) for a discussion on the UK, and Borenstein
(2017) for California.

3Holding all other characteristics of the system, such as slope and orientation constant.
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(a) FIT rate, for 0-4kW solar PV systems. (b) Solar generation potential.

(c) Range of the expected annual FIT payments for 1kW of installed

power (grey), which depends on date and location of installation. Hy-

pothetical system-based incentive (red) used in the second part of the

analysis to assess the siting consequences of output-based and system-

based incentives.

Figure 1: Expected annual FIT payment and its components. Own calculation on Photovoltaic Geographical Infor-
mation System (PVGIS) data and Ofgem data.
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socio-demographic characteristics and comparable population size in each unit (2,000-6,000

households). The �nal dataset is a monthly panel of observations for the entire duration

of the FIT program for the whole of England and Wales (7,194 MSOAs). The installation

dates and locations of the residential PV systems come from the O�ce of Gas and Electricity

Markets (Ofgem) and I use this information to count the number of new installations in each

MSOA and in each month of the panel (Figure 4). I focus on systems that are classi�ed

as �domestic�4 and with declared net capacity equal or less 4kW, which constitute 97% of

the total residential installations. Systems in higher capacity bands require an authorization

to be installed and are only eligible for a lower rate that follows a di�erent schedule and

changed at di�erent time; for these reasons I exclude them from the analysis.

The expected annual FIT payment is obtained as the product of the expected electricity

generation at the population-weighted centroid of an area (obtained from engineering esti-

mates from the Photovoltaic Geographical Information System, PVGIS5) and the FIT rate

in place at the time of installation (also from Ofgem). This is the same type of information

that households looking into installing PV can �nd on the web or from installers and en-

ergy e�ciency associations.6 The average payment varies from 300 GBP per year per kW of

installed capacity at the start of the scheme, to 120 GBP after various reforms in 2012, to

only around 45 GBP after the reform in early 2016, with several adjustments in between, as

shown in Figure 1.

I refer to the price paid to purchase and install a solar system as `cost' of the installation,

as I am framing the installation problem as an investment decision with a trade-o� between

4The systems are classi�ed as domestic, community, commercial, or industrial.
5Data were obtained from the European Commission Joint Research Centre in Ispra. Values are based

on the PVGIS SARAH database. Details on the methodology and the dataset can be found in Huld and
Amillo (2015) and Huld et al. (2012).

6Households can customize their estimate by providing the exact address and rooftop characteristics such
as orientation, slope, and shading. As I do not have this level of information, I use the population-weighted
centroid of the area to approximate the location and set the rest of the parameters to standard ideal settings of
no shading, south-facing orientation, 35 degrees slope, and 14% system losses. I then multiply the generation
estimates obtained by a factor of 0.7, to account for the fact that a substantial share of the households will
not have ideal conditions for installation, such as a east-west orientation, a non-optimal slope, or shading
from trees and nearby buildings.
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costs and future revenues. Data on the cost of installing PV systems come from the Micro-

generation Certi�cation Scheme (MCS), which record the price paid by customers who install

PV in the country (Figure 5) together with their location, date of installation, and system

capacity. To obtain a value of the cost per kW of installed capacity at the area-month level,

I use di�erent approaches; on one side, I �rst calculate the cost per kW of installed capacity

of the observed installations and then take the median and the mean for the area-month;

on the other side, I �rst take the mean and median of the overall cost and of the installed

capacity, and then obtain the ratio. Given the presence of outliers in the data, I use the

median cost per kW for the main speci�cation, while I use the remaining three measures

for robustness checks. I then need to impute the values for all the area-month combinations

where no installation was performed and no direct information on cost is therefore available.

I repeat the same steps using the municipality-month as the aggregation unit, and use this

municipality-level measure to replace the missing values; for the remaining missing observa-

tions, I construct the same measure at the region-level (Gillingham and Tsvetanov, 2019).

This approach is sensible in this setting as installers compete over large areas and carry out

installations even far from their headquarters.

Other covariates included as controls are average electricity consumption before the start

of the FIT scheme, quantity of detached, semi-detached, terraced houses and apartment

buildings, median house price, quantity of owner-occupied houses, number of residents in

di�erent socio-economic categories, employment information (number of residents working

from home, working as homemakers, retired, and unemployed), resident origins (number of

residents born in the UK, in the EU, and elsewhere), and surface area (a proxy for population

density, as MSOAs are constructed to have comparable population size, the larger an area

is the less dense and more rural it is). These variables come from the census, employment

datasets from the o�ce of national statistics, and various government departments. Due to

the very low number of installations and lack of data on system costs in the �rst year of the

policy and after the FIT reform and drastic cuts of 2016, I restrict my analysis to the period
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April 2011-December 2016. Summary statistics are presented in Table 3 in the Appendix.

4 Theoretical framework

4.1 Single agent problem

In the context of small-scale electricity generation, it is becoming more and more common

to refer to the owner of a system as a `prosumer' to stress the change that these systems

introduce in the relationship between the household and the energy they now not only

consumes but also produces. As electricity producers, the households involved in the decision

to adopt PV may therefore be modelled as pro�t-maximizing units, following the theory of

the �rm in microeconomics:

max
qk={0,1}

Π(qk, ψk) = Sk(yk(qk, ψk))− Ck(qk) (1)

that is, unit k chooses whether to adopt (qk = 1) or not (qk = 0) � or the capacity to

install � in the same way a �rm may choose to `enter the market' or to make an investment,

so to maximize their pro�ts (Π). Pro�ts are given by the di�erence between the revenues

that can be obtained from the production of electricity (i.e. the incentive or subsidy S) and

the cost, or investment price, required to install (C). In line with the information collected

from in-depth interviews with UK prosumers,7 the cost is assumed to be paid upfront and

without taking loans � but the analysis can be easily adapted to accommodate instalments

and loans. In the case of solar PV in the UK, the revenues correspond to the output-based

FIT incentive and depends positively on the electricity generated by the system (yk), which

in turns depends positively on the decision to install (qk) and on the solar potential of

the location (ψk), capturing conditions such as weather and cloud coverage, as well as tilt

and azimuth of the roof, and shading. This can be formally written as
∂Sout

k (yk)

∂yk
> 0 and

7In-depth interviews were conducted as part of the ENABLE EU project. More information on the project
and the methodology may be found in Standal et al. (2018, 2020).
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∂yk(qk,ψk)
∂ψk

> 0.

As the UK incentive is purely output-based and does not depend on the amount of

electricity consumed by the household,8 I abstract from modeling the consumption side in

this framework. Therefore:

∂Πout(qk, ψk)

∂ψk
=
∂Soutk (yk(qk, ψk))

∂ψk
− ∂Ck(qk)

∂ψk
=
∂Soutk (yk(qk, ψk))

∂yk(qk, ψk)

∂yk(qk, ψk)

∂ψk
> 0

To understand how this scheme di�ers from a capacity-based incentive, consider that under

the latter the incentive would only depend on the installation decision, i.e. Scap = S(qk),

and the solar generation potential parameter drops out of the pro�t formula, so that:

∂Πcap(qk)

∂ψk
=
∂Scapk (qk)

∂ψk
− ∂Ck(qk)

∂ψk
= 0

That is, compared with capacity-based subsidies, output-based subsidies should trigger more

installations in areas with higher solar potential. The di�erence between the two distribution

should be larger the more variation in solar potential there is over the country (i.e. the

larger ∂yk(qk,ψk)
∂ψk

is), the higher the payment of an additional unit of electricity generation is

(
∂Sout

k (yk(qk,ψk))

∂yk(qk,ψk)
), and the more responsive households are to the incentive.

Output-based incentives like the FIT are paid periodically � here I consider annually � in

the case of the UK FIT for 20 years. The total incentive Sk is therefore the present value of the

�ow of annual payments sk. Each payment is calculated as the product between the FIT rate

per kWh and the total amount of electricity generated in the corresponding period. The latter

is not a pre-determined amount but depends on several factors outside of the household's

control, including the solar potential of the location and actual weather conditions. When

considering whether to install, the actual generation is therefore unobservable by the agent,

and they consider instead an `expected outcome'.

8For example, the UK does not have any form of net metering, a scheme frequently used in other countries.
More details on the policy background are presented in the next Section.
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When the agent considers installing, the expected outcome is therefore the same in every

year � as roof characteristics are �xed, there is no reason to expect systematic di�erences in

the weather in one direction or the other between years, and the FIT rate per kWh generated

is determined by the rate in place at the time of adoption and is held �xed throughout the

20 years.9 The annual subsidy can therefore be considered as a constant annuity, calculated

as the product of the expected annual generation (a random variable) times the FIT rate at

the time of the installation (a constant):

sk,t(yk,t(qk,t=0, ψk)) = yk,t(qk,t=0, ψk) · FITt=0 (2)

and taking the expectation at the time of the adoption decision:

E[sk,t(yk,t(qk,t=0, ψk)] = E[yk,t(qk,t=0, ψk) · FITt=0] =

= E[yk,t(qk,t=0, ψk)] · FITt=0 =

= sk(ȳk(qk,t=0, ψk) ∀t = 1, ..., T (3)

The total subsidy is therefore the present value of an annuity over a �nite period of time:

Sk(qk) =
n∑
t=0

sk,t(yk,t(qk,t=0, ψk)

(1 + r)t
=

1− (1 + r)−T

r
sk(ȳk(qk,t=0)) = ρ sk(ȳk(qk,t=0)) (4)

where T is the number of years the subsidy is paid for (in this case 20 years), and r is the

discount rate. I do not make any assumption on the discount rate but consider it as one of

the parameters to be estimated. In the estimation section I therefore calculate the implicit

discount rate derived from the inter-temporal trade-o� between upfront costs and future

subsidies.

As the government sets the FIT rates, households are `incentive-takers' (equivalent to

9The rate is indexed to the Retail Price Index (RPI) and is therefore adjusted for in�ation on a yearly
basis. There is therefore no need for the household to take in�ation into consideration in their decision.
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price-takers �rms in the theory of the �rm). Similarly, households can be considered to be

cost-takers, as their individual choices are unlikely to a�ect the investment cost (in this case

the price of the PV system and its installation). To support the latter assumption, it is

worth remembering that PV modules and inverters are mostly imported from abroad and

their price is determined in the international market.

4.2 Aggregate demand

The dependent variable for the empirical analysis is Qi,t, the count of new installations in a

location i at a given time t, so from the single-agent problem, I aggregate as follows:

Qi,t =
∑
k∈i,t

qk (5)

Changes in the subsidies and in the installation price result in changes in the pro�tability of

the investment, and therefore trigger adjustment responses in how many households decide

to install, which can be captured by a total elasticity term:

ηΠ =
∆Q

∆Π

Π

Q
=

∆Q

Q

S − C

∆S −∆C
=
ηS ∆S − ηC ∆C

∆S −∆C
(6)

and substituting for the expression of S in equation 4:

ηΠ =
ηs ρ∆s− ηC ∆C

ρ∆s−∆C

The parameters of interest in the estimation are therefore the partial elasticity of demand

to changes in the annual incentive:

ηs =
% change in #installations

% change in subsidy
=

∆Q

∆s

s

Q
= βs

s

Q
(7)
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and the partial elasticity to changes in the cost of purchasing and installing a PV systems:

ηC =
% change in #installations

% change in cost
=

∆Q

∆C

C

Q
= βC

C

Q
(8)

I assume that agents display a constant response to changes in the levels of subsidies and

installation cost (β), and the elasticity therefore varies depending on the value of these

variables and of the number of installations (Q). I obtain estimates of the β coe�cients

through a reduced-form regression analysis, and then calculate the elasticity at the means

of the parameters.

Another parameter of interest is the discount rate r. It is possible to recover an implicit

discount rate from the regression coe�cients by imposing that agents respond in the same

way to an increase (or decrease) in the total revenues S, as they respond to a decrease (or

increase) of the same magnitude in the installation cost C (the same assumption is made

implicitly in De Groote and Verboven, 2019). This implies that the only di�erence between

changes in the annual subsidy and changes in the cost is that the former entails future cash

�ows that need to be discounted, while the latter is an upfront payment. Details of how the

implicit discount rate is obtained are presented in Section 5, where the regression model is

presented.

Within this framework, I consider the main decision for a household to be whether to

install a PV system or not. I do not model the decision on the capacity, or size to be installed,

as in the UK there is evidence that this is constrained by the available space on the roof and

by the barrier of smaller FIT rates and authorization requirements for systems larger than

4kW. In fact, under the UK FIT scheme (which applies to solar PV system up to 5MW), only

systems 0-4kW are eligible for the highest subsidy rate and do not require any authorization

to be installed and connected to the grid, so that over 90% of the installations eligible for

FIT in the UK (i.e. solar PV systems up to 5MW) have a declared net capacity smaller than

4kW. The size of the system is therefore implicitly constrained to a maximum of 4kW in order
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to obtain the highest FIT rate and avoid the bureaucracy of obtaining the authorization.

Within the 0-4kW range, I assume that the size of the system depends exogenously on the

rooftop space available and is uncorrelated to the solar potential of an area. UK prosumers

interviewed by the author (Standal et al., 2018, 2020) often mentioned that the number of

panels installed was constrained by the size of their roof. The analysis can nonetheless be

easily extended to model the choice of the panel size, by considering a continuous qk bounded

at zero, rather than a dichotomous variable. In this case the aggregated demand Q =
∑

k qk

would represent the installed capacity rather than the count of installations, and would be

continuous, but still bounded at zero.

5 Estimation model

Based on the theoretical framework presented in Section 4, installing a solar PV system can

be thought of as a �rm entering a market, as households pay the upfront installation cost,

and then receive revenues over time thanks to the FIT scheme. If households are pro�t-

maximizing agents, the demand for PV is therefore driven by the size of the pro�t Π that

could be made from the investment. I specify the probability of observing a given number

of new installations Qi,t in MSOA i and in month t as a Poisson distribution:

Pr(Qi,t|λ) =
e−λ λQi,t

Qi,t!
with λ = exp(β0 + βΠ Πi,t + βXXi,t). (9)

where Xi,t includes other indirect costs and bene�ts of installation outside of the installation

cost and FIT scheme, such as changes in the value of the house and cheaper electricity. In

fact, when the PV system is producing, households can use electricity for free given that

the UK does not have net metering at the time of the study and the FIT payments for the

residential sector are only linked to the amount the system generates. Households who spend

more time at home during the day are better able to take advantage of the free electricity,

and I therefore include controls for type of employment and work arrangements to control
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for this aspect, as well as baseline electricity consumption. Exploiting the property of the

Poisson distribution, I obtain the following regression equation:

E(Qi,t) = exp(β0 + βΠΠi,t + βXXi,t). (10)

The expression for the pro�t can be developed in terms of the present value of the total

cash �ow of FIT incentive Si,t and the installation cost Ci,t:

Πi,t = Si,t − Ci,t (11)

Each annual FIT payment that constitutes S is the product between the FIT rate per kWh at

the time of installation (a constant) and the total amount of electricity generated in the year

(a random variable). Given the policy design, the latter mainly depends on factors outside of

the household's control, such as the solar potential of the area, the characteristics of the roof,

and the realization of weather events. As detailed in the theoretical framework in Section 4,

in the decision-making stage households have to form expectations on the generation amount

and therefore the FIT payment, and have no reason to expect di�erent values in di�erent

years. Indicating the `expected' annual FIT payment as si,t, I can rewrite the total revenues

as a constant annuity paid over 20 years:

Si,t = si,t
1− 1

(1+r)20

r
(12)

where r is the discount rate � one of my parameters of interest.

Equation (10) can then be rewritten as:

E(Qi,t) = exp[β0+βΠ (Si,t−Ci,t)+βXXi,t] = exp

[
β0 + βΠ

(
1− 1

(1+r)n

r
si,t − Ci,t

)
+ βXXi,t

]
(13)
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and re-naming the β coe�cients:


βs = βΠ

(
1− 1

(1+r)n

r

)
βC = −βΠ

(14)

I obtain the regression equation:

E(Qi,t) = exp(β0 + βssi,t + βCCi,t + βXXi,t). (15)

As a reminder, βs is identi�ed thanks to variation in the expected FIT payment si,t over time

� due to changes in the FIT rate � and over space � because the incentive is output-based

and there is heterogeneity in the expected outcome at each location according to climatic

and geographic conditions. Once β̂s and β̂C have been recovered, I calculate the implicit

discount rate r̂ by solving the two-equation system in two unknowns in equation (14).

5.1 Estimation challenges and estimator

To empirically estimate the demand for residential PV, I set up a Poisson regression model

(Silva and Tenreyro, 2006, 2011; Wooldridge, 2010, Chapter 18) using the panel dataset I

constructed, with the number of new installations in a MSOA in a month as the outcome.

The �rst issue I address is the bunching in the number of monthly installations, which is

not smooth but shows spikes in proximity of each incentive cut (Figure 4.a). This can

be a symptom of short-term dynamics such as delayed or anticipated installations which

might confound identi�cation of long-term e�ects. To address this problem, I include in the

regression indicators for the month before and the month after a rate change.10

To control for unobserved heterogeneity that may confound the estimates and seasonal

e�ects, I introduce year, month of the year, and municipality11 �xed e�ects. Events that

10As the rate is changed as often as every three months, I cannot include controls for months further away
from the change.

11I use �municipality� to refer to the 348 lower-tier local authority units in England and Wales, that is
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a�ect the whole country in a given period, or speci�c characteristics or local policies and

institutions that make areas di�erent from each other but are not observed in my dataset,

would in fact bias the results of the analysis if not taken into consideration. I choose to use

municipality �xed e�ect rather than individual areas �xed e�ect in the main speci�cation

for two reasons. First, municipalities are the administrative divisions corresponding to the

local governments, and I expect di�erences in local institutions and policies � if any � to

occur at this level, while MSOAs are statistical constructs and in general do not have any

administrative meaning. Second, I am interested in estimating explicitly the role of the

built environment and of socio-economic characteristics, and many of these covariates do

not change over time, so that introducing �xed e�ects at the individual area level would not

allow their identi�cation. I nevertheless conduct robustness checks using individual areas

�xed e�ects and municipality-by-year �xed e�ects to support my results.

To address endogeneity concerns such as measurement errors and omitted variable bias,

I use an instrumental variable (IV) approach. This is common practice to account for the

simultaneity problem when using the price of a good as a regressor for its demand, as price

and quantity tend to a�ect each other. Moreover, the policymaker may decide to adjust the

FIT depending on the demand for PV, which might introduce another source of endogeneity,

although this is more likely to be based on macro trends over the country rather than on the

localized demand I am interested in. In both cases there may also be concerns of measurement

errors. In the case of the installation cost, this is due to the fact that I only observe the

variable when a purchase does occur, and I need to impute the value for areas and months

with no installations, as explained in the Data section. In the case of the FIT incentive,

I rely on engineering estimates of the expected generation of a solar system placed at the

population-weighted centroid of the area and under standardized conditions and this might

introduce measurement error compared to more direct measures of the variable.

To predict the exogenous variations in PV system costs, I use two cost-shifters as instru-

unitary authorities, metropolitan districts, London boroughs and local authority districts.
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ment. The �rst one is the monthly price index of Chinese PV modules in the international

market (as in De Groote and Verboven, 2019). The second is the regional median hourly pay

for �Electricians, electrical �tters� (4-digit Standard Occupational Classi�cation), a proxy

for installers' wage. To obtain a valid instrument, I regress this variable on the median

general wage for the region to remove possible income e�ects, which would be correlated

with the error term in the demand equation (as discussed in Gillingham and Tsvetanov,

2019). While the price index only varies over time, the wage data are disaggregated for each

of the 10 regions of England and Wales, introducing some variations over space, although

they are not available at the monthly level, but only yearly. For the FIT incentive, I use

an old provisional schedule of the levels and timing of changes in the rate paid per kWh

generated. This schedule was drafted in the early stages of the scheme but neither the size,

nor the frequency, nor the timing of the changes were actually followed. This instrument

only varies over time. Results for the �rst stage are presented in Table 4 in the Appendix

and show positive correlation between the instruments and the corresponding instrumented

variables. As diagnostics for weak identi�cation, the tables with the second stage include

the Cragg-Donald F-statistics; the values do not point toward a weak instrument problem.

As a robustness check, I also present the results instrumenting only the main regressor of

concern, � the installation cost � and results are very close (see Table 1 and in the Appendix

Table 5).

To empirically estimate my parameters of interest, I use an estimator based on Gillingham

and Tsvetanov (2019), which, as shown in their paper, is consistent for a Poisson model with

endogenous regressors and �xed e�ects. The estimator is based on the control function

approach. In the �rst stage, the endogenous regressors are regressed on the excluded and

included instruments using a linear model with �xed e�ects to recover the residuals. In

the second stage, a Poisson model is used to regress the number of installations on the

main regressors, the estimated residuals from the previous stage, and the covariates and

�xed e�ects. Standard errors are obtained by bootstrapping. Several robustness checks are
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performed with di�erent model speci�cations, including linear and tobit models.

6 Results

Results from the main model speci�cation are presented in Table 1.12 While the raw beta

coe�cients are used in the next steps of the analysis, for the interpretation of what these

results mean I calculate the elasticity at the mean for both the incentive payment and

for the installation costs. Note that these two elements are both components of the price

elasticity (as shown in Section 4), as both incentives and installation costs a�ect the net

price a household is facing to acquire the good. I �nd an elasticity at the mean of 3.31

for the incentive and of -6.92 for the installation cost. The estimated elasticity parameters

are high, pointing to the fact that households are highly responsive to monetary incentives

that change the pro�tability of adopting the technology. To facilitate comparison with results

from the literature on rebates and price elasticity in general, I re-estimate the model using the

installation cost net of the present value of subsidies, using a 7% discount rate (as assumed

in van Benthem et al., 2008) that take into consideration the opportunity cost of purchasing

a solar PV system rather than investing the same amount in a �nancial instrument with a

comparable risk pro�le. I then evaluate the elasticity at the mean, obtaining -0.71. This

result is close to the estimate of -0.85 found using a dynamic structural model by Pless and

van Benthem (2019) for the California rebate policy, and to the -0.65 found by Gillingham

and Tsvetanov (2019) for Connecticut, using reduced-form.

If households are highly responsive to monetary incentives, then making the amount

received proportional to the outcome generated should result in more installations in areas of

the country with better generation potential. To assess the bene�ts of this feature compared

to a system-based incentive, I consider an hypothetical alternative policy that pays a �xed

amount per system throughout the country, rather than an amount proportional to the

output, but still periodically. To make them comparable, I keep the timeline and scale of

12Robustness checks are presented in Tables 5 and tab:feivlinear in the Appendix.
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Table 1: Second stage. Poisson regression model with �xed e�ects and IV (control function approach).

FE IV Poisson FE IV Poisson
PV count PV count

FIT payment 0.0223*** 0.0170***
(0.001) (0.000)

Install. cost -0.00351*** -0.00383***
(0.000) (0.000)

Month before change 0.813*** 0.779***
(0.008) (0.007)

Month after change -0.198*** -0.225***
(0.018) (0.012)

Residuals of cost from 1st stage 0.00356*** 0.00388***
(0.000) (0.000)

Residuals of FIT paym. from 1st stage -0.0109***
(0.001)

Covariates Yes Yes
TOWN fe Yes Yes
MONTH fe Yes Yes
YEAR fe Yes Yes

Endogenous regressors PV cost; FIT payment PV cost
Instruments Chinese PV index Chinese PV index

Install.wage (resid.) Install.wage (resid.)
Provisional FIT

N 484754 484754
pseudo R-sq 0.34 0.34
Cragg-Donald F 255.9 1242.1

Implict discount rate 15% 22%
Implict discount factor 87% 82%

Standard errors in parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001
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Figure 2: Siting of PV under di�erent incentive designs. The x-axis shows the ranking of MSOAs according to their
solar generation potential. The y-axis shows the total number of installations in each MSOA during the period under
analysis.

changes as in the original FIT scheme, and select the amounts so that the predicted total

number of installations in the period of analysis is the same as under the observed scheme.

I then �t the estimated parameters using the observed output-based incentive and using the

hypothetical system-based incentive, and predict the number of installations in each MSOA

in each month. Analyzing the siting of the resulting installations against the generation

potential of the area, I con�rm that the latter ensures that systems are sited in locations

with higher solar generation potential, with a correlation coe�cient between the number of

new installations in an area and the expected outcome of +0.09. Under the hypothetical

system-based incentive, the correlation is not only lower, but change the sign to negative,

with a coe�cient of -0.12 (Figures 2 and 3). This results in less overall electricity generated

and at a higher price.

To understand why the correlation between the siting of the PV and the generation

potential of an area is so low, I look at the role that covariates play in fostering or hindering

adoptions, and how they are distributed over the country and with respect to the expected

outcome (Table 7). I �nd that the latter result is due to some contextual drivers of PV

23



Figure 3: Correlation between installations and potential generation in the area in which they are installed, under
the di�erent incentive scenarios.

adoption, which favor installation but (at least in the UK) are more likely to occur in areas

with low generation potential, for example low population density13 (proxied by the size

of the MSOA), high electricity consumption, owner-occupied houses, house prices14, and

number of people working from home. These covariates could be used to better target the

incentives to achieve a more desirable siting.

In the next step, I assess the choice of paying upfront or delaying the payments over

time. I obtain the implied annual discount rate using the estimated β coe�cients to solve

equation (14) for r. The implied rate is estimated to be high, at 15%, with a discount factor

of 87%. These estimates are very close to results in the literature, such as the 82% discount

factor on future electricity savings for California by Snashall-Woodhams (2019), and the 15%

discount rate for FIT payments in Belgium estimated by De Groote and Verboven (2019).

13Graziano and Gillingham (2015) also �nd that population density has a negative e�ect on PV adoptions,
which are more abundant in rural and sparse areas.

14Note that in the UK historical houses, such as listed buildings and buildings in conservation areas, have
stringent regulation on what modi�cations can be made and require authorization for the installation of
solar panels and other energy related measures (Hilber et al., 2019). Moreover, the aesthetics of the house
is an important concern in the country, and many households oppose solar panels because they make the
house look �ugly� and are afraid they might lower its value (Standal et al., 2020). These concerns are likely
to a�ect higher-value houses.
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While the cited papers use dynamic structural models and are therefore better suited than

the reduced-form analysis of this paper to identify the parameter, it is reassuring that results

are consistent, and contribute to the evidence that households considering whether to adopt

PV 'behave as if' they discount heavily the future. It is worth remarking that this parameter

can capture other behavioral features in addition to pure time preferences, so that it does not

necessarily mean that agents are myopic. For example, it might capture time inconsistent

discounting; mistakes in calculating the subsidies due to low �nancial or technical literacy;

undervaluation due to uncertainty and risk aversion as future subsidies are not as certain as

the upfront cost; default bias, as households might prefer to stick with their current energy

setting rather than invest cognitive e�orts in modifying it; unobserved search costs to obtain

relevant information, or other transaction costs; or households might be afraid they will not

be able to appropriate all of the subsidies, for example if they think they may move out of

the house before the end of the 20 year period and be unable to capitalize the system in the

house sale price. As long as the incentive provider can borrow at a lower rate, this level of

discounting suggests that upfront payments � or even payments over a shorter time frame �

would be more cost-e�ective than periodic payments spanning decades.

To discuss the cost-e�ectiveness of the UK FIT policy, I use some back-of-the-envelope

calculations. I start by using the preferred speci�cation to predict the number of installa-

tions that would have occurred even with no subsidies, to understand the additionality of

the policy. In particular, I assume that the production rate is zero and only the export

rate (which is close to the wholesale price of electricity) is paid for the electricity sold to

the grid, estimated to be 50% of the total generation, as for the existing policy. Repeating

the calculation assuming not even the export rate is o�ered result in even higher addition-

ality. I refer to the marginal adopters as the 'policy-induced' installations, computed by

subtracting the number of inframarginal adopters from the number of installations predicted

for each subsidy scenario. I predict that without the subsidy, 13,136 installations would

have happened anyway in the period under consideration, corresponding to about 5% of the
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predicted total under the existing scheme.15 Nevertheless, the rents appropriated by these

inframarginal adopters are even lower than this share, because compared to the marginal

installations they tend to occur in later times, when the cost of installing and the FIT rate

are lower, and in areas with lower solar generation potential. I estimate that the amount of

subsidy paid out to these households is 3% of the total, suggesting that the scheme has a

very high additionality and not many households would have adopted without incentives to

do so.

By inducing more installations, the objective of the scheme is to decrease emissions from

electricity generation in the country. I estimate that the installations of residential solar

PV systems induced by the policy in the period 2011-2016 will have produced more than

45,300 GWh during their lifetime16 This is roughly equivalent to 22.65 million metric tons of

CO2-eq emission avoided, as compared to the case in which the same amount of electricity

was generated using the energy mix the country had in 201017. This is achieved with an

expenditure of around 4 billion GBP in FIT payments over the 20 years each installation

is eligible for support18. This is equivalent to approximately 179 GBP per metric ton of

CO2-eq avoided, substantially more expensive than the California upfront rebate scheme,

estimated at between 130 and 196 USD (95-143 GBP) by Hughes and Podolefsky (2015). In

terms of electricity generated, I estimate a cost of the policy of 0.09 GBP per kWh, again

substantially more expensive than the cost per kWh of the California CSI, estimated at 0.06

USD (0.04 GBP) in the same study. This di�erence can be explained by the fact that the

California CSI consists of rebates on the upfront cost of the PV systems. In fact, when

using the estimated implicit discount rate the cost of the policy drops to 0.05 GBP per kWh

15As a reference, the number of per capita installations predicted in absence of subsidies is higher to the
number of installations in Norway, a country with almost no support scheme for solar as of 2016 Standal
et al. (2020); in fact it is even larger, consistent with the better solar potential of the UK compared to
Norway. This comparison suggests that the estimates are in a sensible range.

16Useful lifetime is assumed to be 30 years as in van Benthem et al. (2008) and in the pessimistic scenario
of Frischknecht et al. (2015), although this assumption might be conservative, as the latter study considers
35 and 40 years in their realistic and optimistic scenario respectively.

17The carbon intensity of electricity generation in the UK in 2010 is estimated to be around 500 grams of
CO2-equivalent per kWh (Sta�ell, 2017).

18Present value for policy costs are calculated using a 5% discount rate
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generated and 98 GBP per metric ton of CO2-eq avoided, closer to the estimates for the

upfront rebates in California. This suggests that a large part of the incentive goes to cover

households' `impatience', and that the cost of the policy could be lowered by providing the

incentive upfront or in a shorter timeframe.

Even in this case, the policy remains expensive if considered only as a tool to correct

environmental externalities; as a reference point the European Union Emissions Trading

System (EU ETS) carbon market price has never been above 40 GBP19 per metric ton of

CO2-eq avoided, and the estimates for the social cost of carbon (SCC) proposed in the

Stern Review do not exceed 100 GBP (Stern, 2007). Yet, support for renewables provides

additional bene�ts, including fostering innovation and learning-by-doing (Ja�e et al., 2005).

In particular, van Benthem et al. (2008) �nd that when both environmental externalities and

unappropriated learning-by-doing are taken into account, the incentive schemes in California

are very close to the optimal incentive schedule.

7 Conclusions and policy implications

To conclude, the results of this paper suggest that an �hybrid� design with incentives provided

upfront and in an amount that depends on the output potential would be a more cost-e�ective

solution to increase clean energy generation than periodical FIT payments or upfront system-

based rebates. Delaying incentives over time can make a policy very expensive if households

have high rates of discount for future payments, which may result from present-oriented

preferences, aversion to uncertainty, or even from inattention and low �nancial or technical

literacy, with households struggling to calculate the returns of their investment. This result is

likely generalizable to many contexts, as the literature provides evidence that these factors

are indeed relevant for the uptake of residential solar PV in other countries and of new

technologies in general. If households have high price elasticity for PV then incentives

can e�ectively be used to shape siting decisions by linking the size of the payments to the

19As of February 2021.
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outcome the policymaker is interested in, such as the output potential. I have shown that

this is particularly important when contextual factors may be pushing toward undesirable

siting. Understanding the role of these factors and their distribution over the territory are

therefore important when choosing the policy design and could even be leveraged to target

the policy.

As budgetary and distributional concerns are putting green incentive schemes under

scrutiny, rigorous assessments of these policies and their design is critical and urgent. This

paper contributes to these e�orts, so that we can learn from past experiences and improve

future policy design in the energy sector and beyond.
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Appendix A Additional Figures

(a) Number of installation by month. The vertical lines show

every time the FIT rate was changed. The red vertical lines

mark the start and end of the policy.

(b) Installed base, 2011. (c) Installed base, 2017.

Figure 4: Uptake of residential solar PV systems in England and Wales.
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Figure 5: Trend in the cost of residential solar PV systems. Own elaboration on data from MCS.
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Appendix B Additional Tables

Table 2: Back-of-the-envelope calculations of cost-e�ectiveness. Total capacity installed, total generation during
panels lifetile, and cost of the policy per kW of installed capacity and per kWh generated, net of infra-marginal
adoptions (in 2019 GBP).

Total MW of (net, or `additional') capacity installed between 2011-2015 1,510 MW

Overall electricity generated assuming panel life is 30 years 45,307 GWh

Avoided emissions assuming carbon intensity of 500gCO2e/kWh 22.65mln mtCO2e

Total incentives for panels installed between 2011-2015, present value
disc. rate = 0 6.20 billion GBP
disc. rate = 5% 4.05 billion GBP

Total incentive per kW of installed capacity, present value
disc. rate = 0 4,104 GBP/kW
disc. rate = 5% 2,685 GBP/kW

Cost of policy per kWh generated
disc. rate = 0 0.14 GBP/kWh
disc. rate = 5% 0.09 GBP/kWh

Cost of policy per mtCO2e avoided, present value
disc. rate = 0 274 GBP/mtCO2e
disc. rate = 5% 179 GBP/mtCO2e
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Table 3: Summary statistics.

mean sd min p25 p50 p75 max
PV count (new installations) 0.98 2.62 0 0 0 1 219
Expected FIT payment 132.02 76.15 33.87 101.68 113.98 127.22 352.18
(GBP/year for 1kW installed)

FIT production rate (p/kWh) 17.5 11.5 4.2 12.9 14.9 16.0 43.3
FIT export rate (p/kWh) 4.4 .7 3.1 4.5 4.6 4.9 4.9
Provisional FIT rate (p/kWh) 35.2 5.2 27.5 30.2 36.3 39.6 43.3
Generation potential 958 59 729 921 966 986 1122
(kWh/year for a 1kW installed)

Install. cost 11 (GBP for 1kW installed) 1914 599 800 1547 1762 2125 9972
Install. cost 22 (GBP for 1kW installed) 1972 597 800 1601 1837 2195 9972
Install. cost 33 (GBP for 1kW installed) 1889 626 226 1507 1722 2128 9669
Install. cost 44 (GBP for 1kW installed) 1971 596 226 1607 1840 2185 9669
Chinese PV module price index .62 .17 .49 .54 .56 .58 1.32
Median installers wage (residuals) .01 .41 -.82 -.27 -.07 .27 1.14
Median house price (GBP) 211530 137042 23375 126665 177833 250000 3500000
Av. electricity cons. 2010 (kWh/year) 3869 612 2389 3459 3737 4132 7779
MSOA surface area (km2) 21.2 52.7 0.3 1.7 3.2 12.1 1128.1
# Owner-occupied houses 1912 692 24 1495 1930 2360 5182
# Flat (apt. buildings) 595 678 11 183 361 711 5725
# Terraced houses (townhouses) 814 557 17 393 683 1108 3710
# Semi-detached houses (duplex) 991 506 11 649 939 1285 3569
# Detached-houses 719 593 3 203 558 1147 3716
# Working from home 302 136 57 207 275 365 1167
# Housemakers 340 113 46 261 323 397 1123
# Retired 713 241 94 549 689 848 2445
# Unemployed 174 95 18 103 147 222 838
# SocioEc A5 179 112 16 96 153 236 868
# SocioEc B 263 179 24 136 220 339 1593
# SocioEc C 971 346 228 723 945 1184 2849
# SocioEc D 491 163 70 375 470 585 2384
# SocioEc E 366 154 81 260 337 439 1388
# SocioEc F 374 130 55 282 366 457 1105
# SocioEc G 611 199 121 467 598 736 1580
# SocioEc H 475 223 59 304 443 611 1513
# Born in UK 6596 1392 2082 5589 6487 7403 13536
# Born in EU 99 102 6 44 68 114 1363
# Born elsewhere 473 652 17 121 213 463 6143

# Months 69
# Statistical areas 7,194
# Municipalities 348
Tot. observations 484,754

Notes: 1 Cost in the MSOA-month is obtained as the median of the cost per kW of installed capacity from observed purchases.
2 ... average of the observed cost per kW installed. 3 ... ratio of the median observed system cost and the median capacity

installed. 4 ... ratio of the average observed system cost and the average capacity installed. 5 Socio-economic group A (Large

employers and higher managerial and administrative occupations), B (Higher professional occupations), C (Lower managerial,

administrative and professional occupations), D (Intermediate occupations), E (Small employers and own account workers), F

(Lower supervisory and technical occupations), G (Semi-routine occupations), and H (Routine occupations) from

ONS (2005) capture household income and other socio-economic characteristics.
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Table 4: First stage regressions. Install. cost 1 is the measure used in the main speci�cation; the rest are robustness checks.

Model with 2 endogenous regressors Model with 1 endogenous regressor

FITpayment Install.cost1 Install.cost2 Install.cost3 Install.cost4 Install.cost1 Install.cost 2 Install.cost3 Install.cost 4

Chinese PV index 105.3*** 529.6*** 589.9*** 383.0*** 570.0*** 522.1*** 522.6*** 375.9*** 477.4***
(0.482) (11.745) (11.579) (12.905) (11.729) (12.309) (12.124) (13.513) (12.270)

Install.wage (residuals) 0.740*** 57.07*** 47.49*** 71.91*** 65.42*** 56.49*** 46.54*** 71.43*** 64.35***
(0.086) (2.099) (2.070) (2.307) (2.097) (2.104) (2.072) (2.310) (2.097)

Provisional FIT rate 87.29*** 304.8*** 330.0*** 249.8*** 313.3***
(0.204) (4.964) (4.894) (5.454) (4.957)

FIT payment 1.261*** 1.732*** 1.040*** 1.823***
(0.030) (0.029) (0.033) (0.030)

Covariates Yes Yes Yes Yes Yes Yes Yes Yes Yes
TOWN fe Yes Yes Yes Yes Yes Yes Yes Yes Yes
MONTH fe Yes Yes Yes Yes Yes Yes Yes Yes Yes
YEAR fe Yes Yes Yes Yes Yes Yes Yes Yes Yes

N 484754 484754 484754 484754 484754 484754 484754 484754 484754
R-sq 0.94 0.45 0.46 0.39 0.44 0.44 0.46 0.39 0.44
adj. R-sq 0.94 0.45 0.46 0.39 0.44 0.44 0.46 0.39 0.44

Standard errors in parenthesis. * p < 0.05, ** p < 0.01, *** p < 0.001

Notes: 1 Cost in the MSOA-month is obtained as the median of the cost per kW of installed capacity from observed purchases. 2 ... average of the observed cost per kW installed.
3 ... ratio of the median observed system cost and the median capacity installed. 4 ... ratio of the average observed system cost and the average capacity installed.
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Table 5: Second stage regressions. Install. cost 1 is the measure used in the main speci�cation; the rest are robustness checks. Poisson with �xed e�ects and
endogenous variables (control function approach).

FE IV Poisson with 2 endogenous regressors FE IV Poisson with 1 endogenous regressor
PV count1 PV count2 PV count3 PV count4 PV count1 PV count2 PV count3 PV count4

FIT payment 0.0223*** 0.0342*** 0.00976*** 0.0214*** 0.0170*** 0.0195*** 0.0153*** 0.0187***
(0.001) (0.001) (0.000) (0.001) (0.000) (0.000) (0.000) (0.000)

Install. cost -0.00351*** -0.00585*** -0.000577*** -0.00314*** -0.00383*** -0.00415*** -0.00354*** -0.00370***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Month before a change 0.813*** 0.758*** 0.770*** 0.772*** 0.779*** 0.719*** 0.803*** 0.745***
(0.008) (0.007) (0.008) (0.007) (0.007) (0.007) (0.008) (0.007)

Month after a change -0.198*** 0.120*** -0.471*** -0.174*** -0.225*** -0.125*** -0.249*** -0.156***
(0.018) (0.022) (0.016) (0.018) (0.012) (0.013) (0.013) (0.013)

Residuals of cost from 1st stage 0.00356*** 0.00586*** 0.000624*** 0.00314*** 0.00388*** 0.00417*** 0.00359*** 0.00371***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Residuals of FIT paym. from 1st stage -0.0109*** -0.0231*** 0.00203*** -0.00998***
(0.001) (0.001) (0.001) (0.001)

Covariates Yes Yes Yes Yes Yes Yes Yes Yes
TOWN fe Yes Yes Yes Yes Yes Yes Yes Yes
MONTH fe Yes Yes Yes Yes Yes Yes Yes Yes
YEAR fe Yes Yes Yes Yes Yes Yes Yes Yes

Endogenous regressors PV cost PV cost
FIT payment

Instruments Chinese PV index Chinese PV index
Install.wage (resid.) Install.wage (resid.)
Provisional FIT

N 484754 484754 484754 484754 484754 484754 484754 484754
pseudo R-sq 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34
Cragg-Donald F 255.9 206.7 308.1 346.2 1242.1 1165.9 851.4 1208.6

Implicit discount rate 15% 16% 2% 14% 22% 21% 23% 19%
Implicit discount factor 87% 86% 98% 88% 82% 83% 81% 84%

Standard errors in parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001
Notes: 1 Cost in the MSOA-month is obtained as the median of the cost per kW of installed capacity from observed purchases. 2 ... average of the observed cost per kW installed.
3 ... ratio of the median observed system cost and the median capacity installed. 4 ... ratio of the average observed system cost and the average capacity installed.
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Table 6: Second stage regressions. Install. cost 1 is the measure used in the main speci�cation; the rest are robustness checks. Linear 2SLS (IV) with �xed e�ets.

FE IV Linear with 2 endogenous regressors FE IV Linear with 1 endogenous regressor
PV count1 PV count2 PV count3 PV count4 PV count1 PV count2 PV count3 PV count4

FIT payment 0.0351*** 0.0578*** 0.0117*** 0.0336*** 0.0343*** 0.0418*** 0.0277*** 0.0377***
Install. cost -0.00626*** -0.0111*** -0.000345* -0.00563*** -0.0102*** -0.0114*** -0.00815*** -0.00937***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Month before a change 0.793*** 0.727*** 0.677*** 0.722*** 0.892*** 0.752*** 0.865*** 0.772***
(0.019) (0.027) (0.012) (0.017) (0.026) (0.028) (0.024) (0.024)

Month after a change 0.327*** 0.953*** -0.212*** 0.369*** 0.552*** 0.848*** 0.396*** 0.684***
(0.032) (0.060) (0.018) (0.031) (0.031) (0.036) (0.029) (0.031)

Covariates Yes Yes Yes Yes Yes Yes Yes Yes
TOWN fe Yes Yes Yes Yes Yes Yes Yes Yes
MONTH fe Yes Yes Yes Yes Yes Yes Yes Yes
YEAR fe Yes Yes Yes Yes Yes Yes Yes Yes

Endogenous regressors PV cost PV cost
FIT payment

Instruments Chinese PV index Chinese PV index
Install.wage (resid.) Install.wage (resid.)
Provisional FIT

N 484754 484754 484754 484754 484754 484754 484754 484754
Cragg-Donald F 255.9 206.7 308.1 346.2 1242.1 1165.9 851.4 1208.6

Implicit discount rate 17% 19% NA 16% 30% 27% 29% 25%
Implicit discount factor 85% 84% NA 86% 77% 79% 77% 80%

Standard errors in parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001
Notes: 1 Cost in the MSOA-month is obtained as the median of the cost per kW of installed capacity from observed purchases. 2 ... average of the observed cost per kW installed.
3 ... ratio of the median observed system cost and the median capacity installed. 4 ... ratio of the average observed system cost and the average capacity installed.
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Table 7: E�ects of covariates on solar PV uptake, partial correlation of covariates with the generation potential of
locations, and resulting e�ect on siting. Socio-economic group A (Large employers and higher managerial and ad-
ministrative occupations), B (Higher professional occupations), C (Lower managerial, administrative and professional
occupations), D (Intermediate occupations), E (Small employers and own account workers), F (Lower supervisory
and technical occupations), G (Semi-routine occupations), and H (Routine occupations) from ONS (2005) capture
household income and other socio-economic characteristics.

PV count Generation potential resulting e�ect
(Poisson, IV) (partial correlations) on siting

Subsidy (GBP per 1kW installed) 0.0223∗∗∗ (0.001) 0.106∗∗∗ (0.001) +

Install. cost (GBP per 1kW installed) -0.00351∗∗∗ (0.000) -0.00610∗∗∗ (0.000) +

Electricity consumption in 2010 0.00006∗∗∗ (0.000) -0.00981∗∗∗ (0.000) −

MSOA surface area (km2) 0.000694∗∗∗ (0.000) -0.230∗∗∗ (0.003) −

# Owner-occupied houses 0.000154∗∗∗ (0.000) -0.013∗∗∗ (0.000) −

Median house price -0.000000408∗∗∗ (0.000) 0.0000821∗∗∗ (0.000) −

Residents in socio-economic group A -0.0004∗∗∗ (0.000) -0.285∗∗∗ (0.002) +

Residents in socio-economic group B 0.0003∗∗∗ (0.000) 0.036∗∗∗ (0.001) +

Residents in socio-economic group C -0.0001∗ (0.000) 0.052∗∗∗ (0.001) −

Residents in socio-economic group D -0.0003∗∗∗ (0.000) 0.0252∗∗∗ (0.001) −

Residents in socio-economic group E -0.0001 (0.000) 0.127∗∗∗ (0.001) .

Residents in socio-economic group F 0.0000 (0.000) 0.090∗∗∗ (0.002) .

Residents in socio-economic group G 0.0000 (0.000) 0.082∗∗∗ (0.001) .

Residents in socio-economic group H 0.0006∗∗∗ (0.000) -0.092∗∗∗ (0.001) −

Flats -0.0002∗∗∗ (0.000) 0.000 (0.000) .

Terraced houses -0.0002∗∗∗ (0.000) -0.021∗∗∗ (0.000) +

Semi-detached houses -0.0000 (0.000) -0.038∗∗∗ (0.001) +

Detached houses 0.0003∗∗∗ (0.000) 0.008∗∗∗ (0.001) +

Work from home 0.0006∗∗∗ (0.000) -0.104∗∗∗ (0.002) −

Homemaker 0.0005∗∗∗ (0.000) 0.259∗∗∗ (0.001) +

Retired -0.0001∗∗ (0.000) -0.032∗∗∗ (0.001) +

Unemployed -0.0004∗ (0.000) -0.216∗∗∗ (0.002) +

Born in UK 0.0000 (0.000) -0.010∗∗∗ (0.000) .

Born in EU 0.0003∗∗ (0.000) 0.119∗∗∗ (0.002) +

Born elswhere -0.0002∗∗∗ (0.000) -0.027∗∗∗ (0.000) +

plus f.e. and other controls

N 484754 484754
R2 0.40
adj. R2 0.40
pseudo R2 0.34

Standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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