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Abstract

Numerous formal studies have shown that information aggregation through voting is
fragile in large elections when voters receive instrumental payoffs that depend only on the
committee outcome. This raises the question of whether a body of “professional” voters, who
are directly incentivized to vote informatively via instrumental payoffs that condition on
their individual vote, can do better. Arguably, this latter case approximates representative
democracy, where the probability that a legislator is re-elected depends on their individual
voting record. Surprisingly, information is never consistently aggregated in representative
democracy. That is, it is impossible to construct instrumental vote-contingent incentives
that consistently aggregate information, since for any set of payoffs there are information
structures (i.e. prior beliefs and precision of private signals) for which the committee
decision is uninformative. This suggests that direct democracy, while fragile, may be the
preferable institution for aggregating information.
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1 Introduction

In 1785, Nicolas de Condorcet provided a strong theoretical case for democracy by showing
that if all individuals hold private information that is more likely to be “right” than “wrong”
and if all individuals vote according to their private information, then a sufficiently large com-
mittee that votes via a majority rule will choose the right option with arbitrary precision.
That is, his analysis showed that collective decisions improve on individual decision-making
by aggregating the private information of the voting population. More recently, Feddersen
and Pesendorfer (1997)—following on the heels of Austin-Smith and Banks’ (1996) seminal
contribution—extended Condorcet’s insight to a modern strategic setting and showed that in
a common-values referendum, a majority vote aggregates information in large committees as
long as committee members receive informative signals.

However, as subsequent research has shown, information aggregation through voting is
fragile in the classic Condorcet setting, where voters only care about the correctness of the
committee outcome—since the probability that any individual’s vote influences the committee’s
decision becomes arbitrarily small in a large committee, voting behavior is very sensitive to
information and payoff structures. Accordingly, information aggregation in large committees
has been shown to fail due to, among others, the decision rule (Feddersen and Pesendorfer,
1998), vote-contingent payoffs (Dal Bo, 2007, Callander, 2007, Feddersen et al., 2009, and
Midjord et al. 2017, Breitmoser and Valasek, 2017), and a failure of preference monotonicity
(Bhattacharya, 2013). This suggests that while a majority vote has the desirable property of
aggregating information for any information structure (i.e. prior beliefs and the precision of
private signals), a property we refer to as consistency, information aggregation through voting
in the standard setting fails to be robust, in the sense that it is not robust to small payoff
deviations.

Given the frailty of information aggregation by a body of voters who are only motivated by
the correctness of the collective decision (direct democracy), we raise the question of whether
information is better aggregated by a voting body—committee henceforth—of professional vot-
ers (legislators) that are directly incentivized to vote informatively via payoffs that condition
on their individual vote (representative democracy). We refer to this alternative model as rep-
resentative democracy since elected representatives are also held responsible for their individual
voting record. For example, many pundits identified Hillary Clinton’s vote supporting military
intervention in Iraq, which was predicated on the incorrect assumption that Iraq possessed
sizable stores of weapons of mass destruction, as a key factor in her 2008 primary loss to Barak
Obama, who voted against the war. This anecdote illustrates that the ex-post correctness of a
representative’s vote can have an instrumental effect by impacting the probability of re-election,
or election to higher office.

Simple intuition would suggest that directly incentivizing committee members through vote-
contingent payoffs can have a positive impact on information aggregation if these payoffs rein-
force informative voting, thereby resulting in information aggregation that is both complete and
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robust. For example, assume each individual legislators’ probability of re-election increases if
they vote for the option that is shown to be correct ex-post. In this case, the legislator’s payoff
from voting informatively is not tied to the probability that their vote is pivotal, which provides
a robust incentive to vote informatively. This intuition, however, is incomplete. As we show
in this paper, there are no vote-contingent payoffs that result in information being consistently
aggregated, including vote-contingent payoffs that reward committee members for voting cor-
rectly. That is, while for any information structure, there exists a set of vote-contingent payoffs
that result in information aggregation, there are no vote-contingent payoffs that result in infor-
mation aggregation for any information structure. Therefore, in contrast to direct democracy,
the consistency of information aggregation fails generally for any set of vote-contingent payoffs.

For a simple illustration of our main finding, assume a large committee takes a decision
between option a or option b by a majority vote. If the state is α, then option a is socially
optimal, and if the state is β, then option b is socially optimal. The state of the world, however,
is unknown and committee members have a prior belief that the probability that the state is
equal to α is 2/3. Additionally, each committee member receives an iid private signal of a or
b that is informative of the state of the world. Specifically, the probability that they receive
a signal of a (b) given a state of α (β)—we denote this probability as the precision of the
signal—is greater than one-half. In this example, information will be aggregated if committee
members have an incentive to vote according to their private signal (sincere voting).

Next, assume the committee consists of professionals that receive a payoff of 1 for matching
their vote to the state. This simple vote-contingent payoff reinforces the incentive to vote
informatively. However, whether the vote-contingent payoff results in information aggregation
depends on the precision of the private signal: If the signal precision is high, say 4/5, then each
committee member maximizes their expected payoff by voting sincerely. In contrast, if the
signal precision is low, say 3/5, then committee members who receive a signal of b are better
off voting for a. That is, since the informativeness of the private signal is not sufficient to out-
weight the prior—applying Bayes rule shows that Pr(β|si = b) = 3/7 < 1/2 and the relative
expected payoff from voting sincerely is negative given a signal of b—all agents maximize their
expected vote-contingent payoffs by voting according to the prior.

This example shows that when the prior is informative and signal precision is low, then a
simple vote-contingent payoff that rewards committee members if their vote is ex-post correct
will not result in information aggregation. Instead, to incentivize sincere voting, the rewards
for correctly voting for b must be higher than the rewards for correctly voting for a. That
is, vote-contingent payoffs must provide a stronger incentive for voting for the option that is
less likely ex ante. However, as we will show in detail below, this precludes the existence of
vote-contingent payoffs that result in consistent information aggregation, since vote-contingent
payoffs must be tailored to the specific information structure.

Our primary contribution is to the literature on information aggregation in committees. In
contrast to other papers that have largely explored specific instances in which vote-contingent
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payoffs cause information aggregation to fail in large committees (cited above), we take the op-
posite approach and explore whether vote-contingent payoffs can lead to robust and consistent
information aggregation. In this sense, our paper is closer to the work on electoral account-
ability and the political-agency theory of of political representation (see Besley, 2007). Our
findings preclude the use of a simple system of rewards, such as reelection probabilities that
only condition on the ex-post correctness of a legislator’s vote, to incentivize information ag-
gregation. Therefore, direct democracy, while non-robust, is the only system that consistently
aggregates the information of the voting population.

The paper proceeds as follows. Section 2 introduces the model. In Section 3.1 we consider
our benchmark of direct democracy. Section 3.2 presents our general method of characterizing
equilibrium outcomes with vote-contingent payoffs (representative democracy) and presents our
main result.

2 Model

Our model is based on the standard model of information aggregation introduced by Austen-
Smith and Banks (1996). There are two states of the world ω ∈ {α, β} where Pr(α) ∈ (0, 1).
A committee of n > 2 agents indexed by i ∈ {1, ..., n} makes a decision between two choices,
x ∈ {a, b} by majority rule: If strictly more than half of the agents vote for a then x = a, and
otherwise x = b. Each agent receives a private signal, si ∈ {a, b}, and then votes for either a

(vi = a) or b (vi = b). The signals are i.i.d. conditional on ω and Pr(a|α) = Pr(b|β) = 1 − ε,
where ε ∈ (0, 12).

Agents receive both “common-value” and “vote-contingent” payoffs. Common-value payoffs
condition only on the committee decision and the state of the world: all agents receive a payoff
of one if the committee decision matches the state of the world, and a payoff of zero otherwise.
We label the model with common values only as “direct democracy,” since it considers voters
whose instrumental payoffs only depend on the committee decision.

Additionally, we consider the possibility of a body of professional voters, “representative
democracy,” with instrumental payoffs that are linked to each agent’s individual vote. To be as
general as possible, we allow these vote-contingent payoffs to condition not only on the agent’s
vote, but to also interact with the committee decision and the state of the world. That is,
vote-contingent payoffs are represented by a function k(vi, x, ω) : {a, b} × {a, b} × {α, β} → R.

Asymptotically (as n → ∞), however, we can normalize four out of the eight value of
k(vi, x, ω) to zero, and represent the vote-contingent payoffs as the relative payoff for voting
“correctly:”

kω,x ≡ k(vi = ω, x, ω)− k(vi �= ω, x, ω). (1)

For example, kα,b is the relative vote-contingent payoff of voting for a given a majority decision
for b, and a realized state of the world α.

Agents’ payoffs are represented in the following expression (abusing notation we denote
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x = ω when (x, ω) = (a, α), or (x, ω) = (b, β)):

Ui(vi, x, ω) = 11(x = ω) + kω,x,

where the first term represents common-value payoffs.
A strategy for agent i is denoted by σi = (σi(a), σi(b)) such that σi(a) is the probability

that vi = a given si = a and σi(b) is the probability that vi = a given si = b. Given some n

and strategy profile σ we let Zn
α = Pr(x = a|σ, α) indicate the probability that the committee

chooses a when the state is α and Zn
β = Pr(x = a|σ, β) be the probability that the committee

chooses a when the state is β. The pair (Zn
α , Z

n
β ) is denoted by Zn.

Throughout the analysis we rely on the concept of symmetric Bayesian Nash Equilibrium:

Definition 1 (Symmetric Equilibrium). A pair σ∗ is a symmetric equilibrium if, and only if,
for all i ∈ {1, 2, ..., n}, si ∈ {a, b}, and σi: Eσ[U(σ∗, x, ω)|si] ≥ Eσ[U(σ∗

−i, σi, x, ω)|si].
Additionally, we formally introduce our concept of consistent and robust information ag-

gregation:

Definition 2 (Consistent Information Aggregation). We say that a given vector of payoffs
(k(vi, x, ω)) results in consistent information aggregation if there exists a sequence of equilibria
such that Zn → (1, 0) as n → ∞ for all {ε,Pr(α)}.

Following Feddersen and Pesendorfer (1997), we are interested in identifying conditions such
that information aggregation is achieved for all information structures ({ε,Pr(α)}).
Definition 3 (Robust Information Aggregation). Information aggregation is robust for a given
vector of parameters (k(vi, x, ω)) if there exists a neighborhood of (k(vi, x, ω)) such that for all
vote-contingent payoffs within the neighborhood, there exists a sequence of equilibria such that
Zn → (1, 0) as n → ∞.

That is, we define robustness in terms of robustness to small changes in voters’ instrumental
payoffs.

3 Analysis

First we introduce a main object of interest in our analysis, namely the relative expected
utility that agent i receives from voting for a given i’s signal and the strategy of all other
agents. Formally, we denote this value by Φn

si :

Φn
si(σ−i) ≡ Eσ−i [U(vi = a, x, ω)|si]− Eσ−i [U(vi = b, x, ω)|si].

In the following expression, we present a simplified equation for Φn
si—letting pivi indicate

the event that agent i is pivotal for the final decision we get:
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Φn
si(σ−i) =Pr(α|si)

[
(1 + k(a, a, α)− k(a, b, α))Pr(pivi|α) + (kα,a − kα,b)Pr(a,¬pivi|α) + kα,b

]
−Pr(β|si)

[
(1 + k(a, b, β)− k(a, a, β))Pr(pivi|β) + (kβ,a − kβ,b)Pr(a,¬pivi|β) + kβ,b

]

The term Φn
si(σ−i) will feature heavily in our analysis below.

3.1 Benchmark: Direct Democracy

Here we consider a benchmark of the classic Condorcet model with no vote-contingent payoffs
(direct democracy), and show that voting by majority results in consistent information aggre-
gation. In this case, agents only consider the impact of their vote on the committee decision,
and hence base their voting decision on the event that their vote is pivotal. Since k(vi, x, ω) = 0

the game is of common interest with diverse information and optimal equilibria yield asymp-
totically perfect decisions (McLennan, 1998). This leads us to the following result stemming
from McLennan (1998) and Theorem 3 in Feddersen and Pesendorfer (1997).1

Proposition 1 (Consistency Direct Democracy). Given k(vi, x, ω) = 0 for all (vi, x, ω) there
exists a sequence of equilibria (σn∗) such that Zn → (1, 0) as n → ∞ for all information
structures {ε,Pr(α)}.

The easiest way to explain the intuition behind Proposition 1 is when Pr(α) = 1
2 and n is

uneven. Suppose all agents vote sincerely and thus when agent i is pivotal there are exactly
n−1
2 signals for a and n−1

2 signals for b among all agents other than i. In this case, it is strictly
optimal for agent i to vote sincerely for any ε as si determines which option is supported by the
most signals. In all other cases (where i is not pivotal), the vote from agent i is inconsequential
and the sincere strategy is then optimal. Given the sincere strategy profile and the law of large
numbers the committee’s mistake probability converges to zero as n → ∞ for any information
structure, which shows that direct democracy results in consistent information aggregation.

Next, we follow Feddersen (2009) and use the example of a simple “moral” payoff to illustrate
the non-robustness of direct democracy. Assume a is a moral option and, correspondingly,
kα,a = kβ,a = δ > 0 for δ small. This gives us the following expression for Φn

si(σ−i):

Φn
si(σ−i) =(1 + δ)Pr(pivi|α)Pr(α|si)− Pr(pivi|β)Pr(β|si) + δPr(¬pivi)

By contradiction, assume there exists a sequence of equilibria σn∗ �= (1, 1) whereby Pr(¬pivi)
is bounded away from zero for all n > n′. For n large enough this gives us a contradiction as
the pivotal probability converges uniformly to zero as n → ∞ and δPr(¬pivi is bounded away
from zero and thus optimal behavior prescribes σn = (1, 1). It follows that under this incentive

1Proof can be requested from the authors as supplementary material to Midjord et al. (2017).
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structure, it is not an equilibrium for large committees to vote sincerely. Intuitively, for a large
enough committee, given a vanishing pivotal probability, all voters maximize their payoffs by
voting according to the moral bias.

Proposition 2 (Non-robustness Direct Democracy). For any kα,a = δ > 0 (and all other vote-
contingent payoffs being zero) any sequence of equilibria (σn∗) have Zn → (0, 0) or Zn → (1, 1)

as n → ∞.

This result demonstrates that information aggregation under direct democracy is not robust
to small payoffs deviations.

3.2 Information Aggregation under Representative Democracy

We first present a novel approach that allows us to generically characterize equilibria of large
committees with vote-contingent payoffs for any given signal structure. This approach allows
us to characterize the set of equilibrium outcomes in a straightforward manner by identifying
the probabilities Pr(X = a|α) and Pr(X = a|β) that satisfy a simple set of conditions on the
expression Φsi(Z), defined as:

Φsi(Z) = Pr(α|si)
[
kα,aZα + kα,b(1− Zα)

]− Pr(β|si)
[
kβ,aZβ + kβ,b(1− Zβ)

]
, (2)

Loosely, since all probability terms involving pivi converge uniformly to 0 as n → ∞, Φsi(Z)

can be thought of as the limiting expression of the relative payoff of voting for option a as
n → ∞.

This structure allows us to define a limit outcome as a pair of conditional decision proba-
bilities (Zα, Zβ) that are consistent with the limiting values of a sequence of strategies σn that
are best responses, given the expression for the limiting relative payoff of voting for option a,
Φsi(Z):

Definition 4 (Limit Outcome). Given vote-contingent payoffs kω,x, a pair (Zα, Zβ) ∈ [0, 1]2

is a limit outcome if, and only if, the following conditions are met:

Zα = 1 if Φa(Zα, Zβ) > 0,

Zα ∈ [0, 1] if Φa(Zα, Zβ) = 0,

Zα = 0 if Φa(Zα, Zβ) < 0.

Zβ = 1 if Φb(Zα, Zβ) > 0,

Zβ ∈ [0, 1] if Φb(Zα, Zβ) = 0,

Zβ = 0 if Φb(Zα, Zβ) < 0.

Consider the example of a limit outcome with Zα = 1 and Zβ ∈ [0, 1]. Intuitively, in the
limit agents with a signal of a must have a best response of voting for a, so that Zα = 1, and
agents with a signal of b must be indifferent between voting for a and b, so that Zβ ∈ [0, 1].
Therefore, for Zα = 1 and Zβ ∈ [0, 1] to be the limiting outcome of a sequence of equilibrium
voting strategies, it must be the case that Φa(Zα, Zβ) > 0 and Φb(Zα, Zβ) = 0 for these values
of (Zα, Zβ).
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This intuition suggests that the set of limiting values of (Zn
α , Z

n
β ) that result from limit

equilibria is equivalent to the set of limit outcomes. However, this result must be proved
formally, and is derived in the following result that establishes that (Zα, Zβ) is a limit outcome
if, and only if, it corresponds to the limit of (Zn

α , Z
n
β ) for a convergent sequence of finite

equilibria:

Theorem 1 (Approximation of outcomes of large committees). Generically, in the space of
all payoff vectors,2

(1) Given any limit outcome (Zα, Zβ), there exists a sequence of equilibria of the finite
games (σn∗), such that the associated sequences of decision probabilities Zn

α and Zn
β converge

to Zα and Zβ.

(2) The sequence of decision probabilities, (Zn
α , Z

n
β ), associated to any sequence of equilibria

of the finite games, (σn∗), must converge to the set of limit outcomes.

The proof of Theorem 1, and the proofs of all following formal results can be found in the
Online Appendix. Intuitively, Theorem 1 results from the fact that, as n → ∞, the terms
in agent i’s best response function that condition on i being pivotal converge uniformly to 0

for any set of strategies, resulting in an equivalence of the limiting “fixed points” of the best
response functions represented by Φn

si and the fixed points of Φsi .
To establish our main result, we utilize the result of Theorem 1 to first characterize the set

of vote-contingent payoffs that aggregate information for a given signal structure, and then use
this characterization to prove our impossibility result. To begin, we present a result that allows
us to restrict attention to vote-contingent payoffs with kα,a > 0, kβ,b > 0; i.e. rewarding agents
for matching their vote to the state.

Lemma 1 (Sincere Voting). Information aggregation is robust for a given vector of parameters
(kω,x) if and only if Z = (1, 0) is a limit outcome under (kω,x) with Φa > 0 and Φb < 0.

Lemma 1 shows that the payoff vectors that result in robust information aggregation are
equivalent to the payoff vectors that give agents a strict incentive to vote sincerely, defined as
vi = si, as n → ∞ given Z = (1, 0). Therefore, given Lemma 1 and the result of Theorem 1,
we are able to characterize the set of vote-contingent payoffs that result in robust information
aggregation by identifying the set of payoffs that satisfy Φa > 0 and Φb < 0:

Proposition 3 (Robustness Representative Democracy). Given an information structure
{Prα, ε}, a necessary and sufficient condition for robust information aggregation with kα,a > 0,
kβ,b > 0, is that:

kα,a
kβ,b

∈
(
Pr(β|si = a)

Pr(α|si = a)
,
P r(β|si = b)

Pr(α|si = b)

)
.

2That is, any payoff vector (kω,x) to which the theorem does not apply is arbitrarily close to vectors to
which it does apply. Moreover, while there are certain (non-generic) border cases to which Theorem 1 does not
apply, Proposition 4 in the Appendix fully characterizes the set of these points and shows that it has measure
zero. Importantly, Lemma 1 below also implies that these non-generic cases do not impact our main result of
characterizing the set of vote-contingent payoffs that lead to robust information aggregation.
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Proposition 3 states the conditions on vote contingent payoffs that are necessary and suf-
ficient for information aggregation given kα,a > 0, kβ,b > 0. We should emphasize that it is
only the relative size of the vote-contingent payoffs that matter—information aggregation can
be achieved with vote-contingent payoffs that are very small (or very large), as long as they are
balanced relative to the prior. In what follows we refer to any payoff vector which satisfies the
conditions of Proposition 3 as RIA (Robust Information Aggregation) payoffs.

Our main result uses the characterization in Proposition 3 to show that there is no set of
vote-contingent payoffs that result in consistent information aggregation.

Theorem 2 (Non-Existence Consistent Information Aggregation). Given any set of vote-
contingent payoffs {kω,vi} with kω,vi > 0, information aggregation fails for some information
structures {}.

That is, Theorem 2 shows that, in contrast to direct democracy, under representative democ-
racy there are no vote-contingent payoffs that consistently aggregate information. Intuitively,
Theorem 2 follows from the fact that for any signal precision, there exists two priors (Pr(α))
such that the corresponding set of RIA payoffs are non-overlapping.

4 Conclusion

Our paper contrasts the ability of a body of voters to aggregate information through voting if the
voters only receive instrumental payoffs based on the committee outcome (direct democracy)
or if voters also receive instrumental payoffs based on their individual vote (representative
democracy). We show that while representative democracy can result in robust information
aggregation for any given information structure, there is no set of vote-contingent payoffs that
results in consistent information aggregation (i.e. information aggregation for every information
structure). This implies that direct democracy, while non-robust, may do a better job at
consistently aggregating information.

References

Austen-Smith, D. And Banks, J. (1996). Information Aggregation, Rationality, and the Con-
dorcet Jury Theorem. APSR, 90 (March): 34-45.

Besley, T. (2007). Principled Agents?: The Political Economy of Good Government. OUP,
Oxford.

Bhattacharya, S. (2013). Preference monotonicity and information aggregation in elections,
Econometrica, 81(3):1229-1247.

Breitmoser, Yves and Valasek, Justin (2017). A rationale for unanimity in committees.
WZB Discussion Paper, SP II 2017-308.

9



Callander, S. (2008). Majority rule when voters like to win. Games and Economic behavior,
64:393-420.

Dal Bo, E. (2007). Bribing voters. AJPS, 51(4):789-803.

Feddersen, T. And Pesendorfer, W. (1997). Voting Behavior and Information Aggregation
in Elections with Private Information. Econometrica, 65: 1029-58.

Feddersen, T. And Pesendorfer, W. (1998). Convicting the Innocent: The Inferiority of
Unanimous Jury Verdicts under Strategic Voting. APSR, 92(1): 23-35.

Feddersen, T., Gailmard, S., and Sandroni, A. (2009). Moral bias in Large Elections:
Theory and Experimental Evidence. APSR, 103(2):175-192.

McLennan, A. (1998). Consequences of the Condorcet Jury Theorem for Beneficial Infor-
mation Aggregation by Rational Agents. APSR, 92 (June): 413-18.

Midjord, R., Rodríguez Barraquer, T., and Valasek, J. (2017). Voting in large committees
with disesteem payoffs: a ‘state of the art’ model. Games and Economic behavior, 104:430-443.

A Appendix: Proofs of Formal Results

Before presenting the proof for Theorem 1, we introduce some notation that will be helpful for
the proof: we let μω,n = σn(a)(1− ε)+σn(b)ε be the probability that a randomly chosen agent
votes for a given σn and ω. In the limit as n → ∞ we have μα = σ(a)(1 − ε) + σ(b)ε and
μβ = σ(a)ε+ σ(b)(1− ε).

Proof of Theorem 1: We prove part (1) of Theorem 1 by addressing three different
kinds of limit outcomes separately. Lemma 2 addresses limit outcomes (Zα, Zβ) at which
both inequalities hold strictly, Φa ≶ 0 and Φb ≶ 0. Lemma 3 addresses limit outcomes at
which exactly one of the inequalities holds with equality, at least one of Zα and Zβ is interior
(belongs to (0, 1)) and its slope in the inequality that holds with equality is non-zero. Lemma
4 addresses the case in which both inequalities hold with equality and both Zα and Zβ are
interior. Proposition 4, presented immediately after this proof, shows that the set of points
to which none of Lemmas 2, 3 and 4 apply has measure 0, thus establishing that the theorem
holds generically, as pointed out by its statement.

Part (2) of Theorem (1) is proved in Lemma 5.

Lemma 2. If (Zα, Zβ) is a limit outcome at which the two inequalities (associated to Φa

and Φb) hold strictly, then there exists a sequence of equilibria of the finite games (σn∗) such
that the associated sequences of decision probabilities (Zn

α) and (Zn
β ) converge to Zα and Zβ .
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Proof of Lemma 2: If both inequalities hold strictly, then let σn∗(a) = 1 if Φa(1, 0) > 0,
σn∗(a) = 0 if Φa(1, 0) < 0, σn∗(b) = 1 if Φb(1, 0) > 0, σn∗(b) = 0 if Φb(1, 0) < 0.

Due to convergence of Φn
si to Φsi for all sufficiently large n, the inequalities associated to

each of Φn
a and Φn

b will hold strictly when evaluated at (σn∗(a), σn∗(b)). This is the case, be-
cause given that ε < 1/2, (Zn

α) and (Zn
β ) will converge to Zα and Zβ as given in Definition 4

(of limit outcomes). Thus, for all sufficiently large n, σn∗ will be an equilibrium and (Zn
α) and

(Zn
β ) will converge to Zα and Zβ as required.

Lemma 3. If (Zα, Zβ) is a limit outcome at which only one of two inequalities holds with
equality (call it Φs), at least one of Zα ∈ (0, 1) or Zβ ∈ (0, 1) holds (call it Zω), and the slope
of Zω in Φs is non-zero, then there exists a sequence of equilibria of the finite games (σn) such
that the associated sequences of decision probabilities (Zn

α) and (Zn
β ) converge to Zα and Zβ .

Proof of Lemma 3: Assume that the inequality associated to Φs holds with equality
and the one associated to Φs′ holds strictly and let Zω ∈ (0, 1). We denote the state of the
world different from ω by ω′. Then for all sufficiently small δ the inequality associated to
Φs′ evaluated at (Zω + δ, Zω′), continues to hold strictly (and has the same direction as when
evaluated at (Zω, Zω′)), and Φs > 0; and evaluated at (Zω − δ, Zω′), the inequality associated
to Φs′ continues to hold strictly (and has the same direction as when evaluated at (Zω, Zω′)),
and Φs < 0. This is because of the fact that Φa and Φb are linear functions of Zα and Zβ and
the slope of Zω in Φs is non-zero.3

Now, for all sufficiently large n it must be the case if we fix Zn = (Zω − δ, Zω′), or Zn =

(Zω + δ, Zω′) then the inequalities above hold for Φn
a and Φn

b independently of the strategy σn

that we use to evaluate the additional terms in Φn
a and Φn

b associated to the probabilities of
the event pivi. This is the case because of the uniform convergence to 0 of these probabilities.
We split the rest of the proof into cases: (case I) Φa > 0, Φb = 0, (case II) Φa = 0, Φb < 0,
(case III) Φa < 0, Φb = 0 and (case IV) Φa = 0, Φb > 0.

(case I) (Φa > 0, Φb = 0)
Then σ(a) = 1 and Zα = 1 and therefore Zβ ∈ (0, 1). Notice that regardless of what σn(b) is,
we can have Zn

α approximate 1 as well as we want by choosing n sufficiently large. Furthermore
the quality of the approximation is increasing in σn(b).4 Evaluated at (σn(a), σn(b)) = (1, 0),
μβ < 1/2 and at (σn(a), σn(b)) = (1, 1), μβ > 1/2 so for all sufficiently large n, Zn

β is smaller
than Zβ + δ when evaluated at (1, 0) and larger than Zβ + δ when evaluated at (1, 1). By
continuity we can find σ̄n(b) such that Zn

β = Zβ + δ. It follows that for all large enough n,
Φn
a > 0 and Φn

b > 0 when evaluated at (1, σ̄n(b)). The key is that for any ε we can find an N

such that for all n > N we get Zn
α > 1− ε and Zn

β = Zβ + δ when evaluated at (1, σ̄n(b)).
Similarly, we can find σn(b) such that Zn

β = Zω − δ so that for all large enough n, Φn
a > 0

3Note that the δ may need to be negative; when we say “for all small enough δ” we mean in absolute value.
4So we can establish the required threshold for n by considering σn(b) = 0.
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and Φn
b < 0 when evaluated in (1, σn(b)). It follows that there exists σn(b) ∈ (σn(b), σ̄n(b)) such

that Φn
a > 0 and Φn

b = 0 when evaluated at (1, σn(b)). Pick n1 large enough such that this is
the case and notice that (1, σn(b)) is an equilibrium of the game with n1 players. Furthermore,
note that Zα

n1
> 1 − ε and Zβ

n1 ∈ (Zβ − δ, Zβ + δ).5 We now repeat all the process above but
starting with δ/2 instead of δ and ε/2 instead of ε, and construct n2 > n1 and σn2(b)). In
step k we repeat the process above but starting with δ/k instead of δ and ε/k instead of ε,
and construct nk > nk−1 and σnk

(b)). We thus obtain a subsequence of committee sizes and
equilibria (1, σnk

(b)). We complete the sequence by using the method that we used for n1 for
all games with committee sizes between n1 and n2, the method for nk−1 for all games with
committees of sizes between nk−1 and nk. By construction Zn → Z.

(case II) (Φb < 0, Φa = 0)
Then σ(b) = 0 and Zβ = 0 and therefore Zα ∈ (0, 1). Notice that regardless of what σn(a) is,
we can have Zn

β approximate 0 as well as we want by choosing n sufficiently large. Furthermore
the quality of the approximation is decreasing in σn(a).6 Evaluated at (σn(a), σn(b)) = (0, 0),
μα < 1/2 and at (σn(a), σn(b)) = (1, 0), μα > 1/2 so for all sufficiently large n, Zn

α is smaller
than Zα + δ when evaluated at (0, 0) and larger than Zα + δ when evaluated at (1, 0). By
continuity we can find σ̄n(a) such that Zn

α = Zα + δ. It follows that for all large enough n,
Φn
a > 0 and Φn

b < 0 when evaluated at (σ̄n(a), 0). The key is that for any ε we can find an N

such that for all n > N we get Zn
β < ε and Zn

α = Zα + δ when evaluated in (σ̄n(a), 0).
Similarly, we can find σn(a) such that Zn

α = Zα − δ so that for all large enough n, Φn
a < 0

and Φn
b < 0 when evaluated in (σn(a), 0). It follows that there exists σn(a) ∈ (σn(a), σ̄n(a))

such that Φn
a = 0 and Φn

b < 0 when evaluated at (σn(a), 0). Pick n1 large enough such that this
is the case and notice (σn(a), 0) is an equilibrium of the game with n1 players. Furthermore,
note that Zβ

n1 < ε and Zα
n1

∈ (Zα − δ, Zα + δ)7 We now repeat all the process above but
starting with δ/2 instead of δ and ε/2 instead of ε, and construct n2 > n1 and σn2(a)). In
step k we repeat the process above but starting with δ/k instead of δ and ε/k instead of ε,
and construct nk > nk−1 and σnk

(a)). We thus obtain a subsequence of committee sizes and
equilibria (σnk

(a), 0). We complete the sequence by using the method that we used for n1 for
all games with committee sizes between n1 and n2, the method for nk−1 for all games with
committees of sizes between nk−1 and nk. By construction Zn → Z.

(case III) (Φa < 0, Φb = 0)
Then σ(a) = 0 and Zα = 0 and therefore Zβ ∈ (0, 1). Notice that regardless of what σn(b) is,
we can have Zn

α approximate 0 as well as we want by choosing n sufficiently large. Furthermore
the quality of the approximation is decreasing in σn(b).8 Evaluated at (σn(a), σn(b)) = (0, 0),
μβ < 1/2 and at (σn(a), σn(b)) = (0, 1), μβ > 1/2 so for all sufficiently large n, Zn

β is smaller
than Zβ + δ when evaluated at (0, 0) and larger than Zβ + δ when evaluated at (0, 1). By

5Notice that δ was not necessarily positive. If δ < 0 then the correct interval is just (Zβ + δ, Zβ − δ).
6So we can establish the required threshold for n by considering σn(a) = 1.
7Notice that δ was not necessarily positive. If δ < 0 then the correct interval is just (Zβ + δ, Zβ − δ).
8So we can establish the required threshold for n by considering σn(b) = 1.
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continuity we can find σ̄n(b) such that Zn
β = Zβ + δ. It follows that for all large enough n,

Φn
a < 0 and Φn

b > 0 when evaluated at (0, σ̄n(b)). The key is that for any ε we can find an N

such that for all n > N we get Zn
α < ε and Zn

β = Zβ + δ when evaluated in (0, σ̄n(b)).
Similarly, we can find σn(b) such that Zn

β = Zω − δ so that for all large enough n, Φn
a < 0

and Φn
b < 0 when evaluated in (0, σn(b)). It follows that there exists σn(b) ∈ (σn(b), σ̄n(b)) such

that Φn
a < 0 and Φn

b = 0 when evaluated at (0, σn(b)). Pick n1 large enough such that this is the
case and notice that (0, σn(b)) is an equilibrium of the game with n1 players. Furthermore, note
that Zα

n1
< and Zβ

n1 ∈ (Zβ − δ, Zβ + δ).9 We now repeat all the process above but starting with
δ/2 instead of δ and ε/2 instead of ε, and construct n2 > n1 and σn2(b)). In step k we repeat the
process above but starting with δ/k instead of δ and ε/k instead of ε, and construct nk > nk−1

and σnk
(b)). We thus obtain a subsequence of committee sizes and equilibria (0, σnk

(b)). We
complete the sequence by using the method that we used for n1 for all games with committee
sizes between n1 and n2, the method for nk−1 for all games with committees of sizes between
nk−1 and nk. By construction Zn → Z.

(case IV) (Φb > 0, Φa = 0)
Then σ(b) = 1 and Zβ = 1 and therefore Zα ∈ (0, 1). Notice that regardless of what σn(a) is,
we can have Zn

β approximate 1 as well as we want by choosing n sufficiently large. Furthermore
the quality of the approximation is increasing in σn(a).10 Evaluated at (σn(a), σn(b)) = (0, 1),
μα < 1/2 and at (σn(a), σn(b)) = (1, 1), μα > 1/2 so for all sufficiently large n, Zn

α is smaller
than Zα + δ when evaluated at (0, 1) and larger than Zα + δ when evaluated at (1, 1). By
continuity we can find σ̄n(a) such that Zn

α = Zα + δ. It follows that for all large enough n,
Φn
a > 0 and Φn

b > 0 when evaluated at (σ̄n(a), 1). The key is that for any ε we can find an N

such that for all n > N we get Zn
β > 1− ε and Zn

α = Zα + δ when evaluated in (σ̄n(a), 1).
Similarly, we can find σn(a) such that Zn

α = Zα − δ so that for all large enough n, Φn
a < 0

and Φn
b > 0 when evaluated in (σn(a), 1). It follows that there exists σn(a) ∈ (σn(a), σ̄n(a))

such that Φn
a = 0 and Φn

b > 0 when evaluated at (σn(a), 1). Pick n1 large enough such that this
is the case and notice (σn(a), 1) is an equilibrium of the game with n1 players. Furthermore,
note that Zβ

n1 < ε and Zα
n1

∈ (Zα − δ, Zα + δ).11 We now repeat all the process above but
starting with δ/2 instead of δ and ε/2 instead of ε, and construct n2 > n1 and σn2(a)). In
step k we repeat the process above but starting with δ/k instead of δ and ε/k instead of ε,
and construct nk > nk−1 and σnk

(a)). We thus obtain a subsequence of committee sizes and
equilibria (σnk

(a), 1). We complete the sequence by using the method that we used for n1 for
all games with committee sizes between n1 and n2, the method for nk−1 for all games with
committees of sizes between nk−1 and nk. By construction Zn → Z.

Lemma 4. Given any limit outcome (Z∗
α, Z

∗
β), such that

9Notice that δ was not necessarily positive. If δ < 0 then the correct interval is just (Zβ + δ, Zβ − δ).
10So we can establish the required threshold for n by considering σn(a) = 0.
11Notice that δ was not necessarily positive. If δ < 0 then the correct interval is just (Zβ + δ, Zβ − δ).
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(1) The two inequalities (associated to Φa and Φb) hold with equality.

(2) Zα ∈ (0, 1) and Zβ ∈ (0, 1),

then there exists a sequence of equilibria of the finite games (σn∗) such that the associated
sequences of decision probabilities (Zn

α) and (Zn
β ) converge to Z∗

α and Z∗
β .

Proof of Lemma 4: Note that Φa and Φb are both linearly increasing, or decreasing,
in Zα and Zβ where the slope (which is non-zero as kα,a − kα,b = 0 or kβ,b − kβ,a = 0 rules
out (Z∗, σ∗)) of Φa (Φb) is steeper with respect to Zα (Zβ). By this, there exists a constant
δ such that (Z∗

α + δ), (Z∗
α − δ) ∈ (0, 1) and Z ′

β , Z
′′
β ∈ (0, 1) such that Φa = (Z∗

α + δ)(kα,a −
kα,b)Pr(α|si = a) + Z ′

β(kβ,b − kβ,a)Pr(β|si = a) + kα,bPr(α|si = a) − kβ,bPr(β|si = a) = 0

and Φa = (Z∗
α − δ)(kα,a − kα,b)Pr(α|si = a) + Z ′′

β(kβ,b − kβ,a)Pr(β|si = a) + kα,bPr(α|si =
a) − kβ,bPr(β|si = a) = 0 whereby Φb(Z

∗
α + δ, Z ′

β) > x and Φb(Z
∗
α − δ, Z

′′
β ) < −x, where

x is some positive constant. By the same token, there exists δm = δ
m , where m = 1, 2, ...,

such that (Z∗
α + δm), (Z∗

α − δm) ∈ (0, 1) and Z ′
βm, Z ′′

βm ∈ (0, 1) such that, for any m, we have
Φa = (Z∗

α + δm)(kα,a − kα,b)Pr(α|si = a) + Z ′
βm(kβ,b − kβ,a)Pr(β|si = a) + kα,bPr(α|si =

a) − kβ,bPr(β|si = a) = 0 and Φa = (Z∗
α − δm)(kα,a − kα,b)Pr(α|si = a) + Z ′′

βm(kβ,b −
kβ,a)Pr(β|si = a) + kα,bPr(α|si = a)− kβ,bPr(β|si = a) = 0 whereby Φb(Z

∗
α + δm, Z ′

βm) > xm

and Φb(Z
∗
α − δm, Z ′′

βm) < −xm, where xm is some positive constant. Moreover, (Z∗
α + δm),

(Z∗
α − δm) converge to Z∗

α and Z ′
βm, Z ′′

βm converge to Zβ∗ as m → ∞.
Recall that

Φn
si(σ) =(k(a, a, α)− k(a, b, α))Pr(pivi|α)Pr(α|si)− (k(a, b, β)− k(a, a, β))Pr(pivi|β)Pr(β|si)

+ (kα,a − kα,b)Pr(a,¬pivi|α)Pr(α|si) + (kβ,b − kβ,a)Pr(a,¬pivi|β)Pr(β|si)
+ kα,bPr(α|si)− kβ,bPr(β|si)

where Φn
a and Φn

b are continuous in σ(a) and σ(b) and Pr(a,¬pivi|α) is a continuous, and
strictly increasing, function of μα = σ(a)(1−ε)+σ(b)ε and Pr(a,¬pivi|β) is a continuous, and
strictly increasing, function of μβ = σ(a)ε+σ(b)(1−ε). For σ = (1, 1) we have Pr(a,¬pivi|α) =
1 and Pr(a,¬pivi|β) = 1 and for σ = (0, 0) we have Pr(a,¬pivi|α) = 0 and Pr(a,¬pivi|β) = 0.
Consider some n and let μ∗

α,n indicate the unique μα,n such that Pr(a,¬pivi|α) = (Z∗
α + δ).

Given μ∗
α,n, the highest possible σn(a) is attained with σn = (1,

μ∗
α,n−(1−ε)

ε ) if μ∗
α,n ≥ (1−ε) and

σn = (
μ∗
α,n

(1−ε) , 0) if μ∗
α,n < (1 − ε) and the lowest possible σn(a) is attained with σn = (0,

μ∗
α,n

ε )

if μ∗
α,n ≤ ε and σn = (

μ∗
α,n−ε

(1−ε) , 1) if μ∗
α,n > ε. Choosing the highest possible σn(a) gives the

lowest feasible Pr(a,¬pivi|β) and choosing the lowest possible σn(a) gives the highest feasible
Pr(a,¬pivi|β). As (Z∗

α + δ) ∈ (0, 1) we must have that μ∗
α,n converges to 1

2 as n → ∞
and thereby, for all sufficiently large n, the two relevant extremes are σn = (

μ∗
α,n

(1−ε) , 0) and

σn = (
μ∗
α,n−ε

(1−ε) , 1). For these two extremes Pr(a,¬pivi|β) converge to 0 and 1, respectively,
as n → ∞, and since Z ′

β ∈ (0, 1) (because by assumption kβ,b − kβ,a �= 0) then, for all
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sufficiently large n, Φn
a > 0 for one of the extremes and Φn

a < 0 for the other (note that
Φn
a(

μ∗
α,n

(1−ε) , 0) → Φa(Z
∗
α + δ, 0) and Φn

a(
μ∗
α,n−ε

(1−ε) , 1) → Φa(Z
∗
α + δ, 1). By continuity of Φn

a in the
σ-plane then, for all sufficiently large n, there exists an intermediate σn such that Φn

a(σ) = 0.
Moreover, given such σn whereby Φn

a(σ) = 0 we have that

Φn
a(σ) =(k(a, a, α)− k(a, b, α))Pr(pivi|α)Pr(α|si)− (k(a, b, β)− k(a, a, β))Pr(pivi|β)Pr(β|si)

+ (kα,a − kα,b)(Z
∗
α + δ)Pr(α|si) + (kβ,b − kβ,a)Pr(a,¬pivi|β)Pr(β|si)

+ kα,bPr(α|si)− kβ,bPr(β|si) = 0,

and as n → ∞ the pivotal terms uniformly converge to zero and we can conclude that,
given our σn such that Φn

a(σ) = 0, the term Pr(a,¬pivi|β) must converge to Z ′
β (where Z ′

β is
as defined above ensuring that Φa = 0 given Zα = (Z∗

α + δ)).
By the parallel arguments we can fix Pr(a,¬pivi|α) = (Z∗

α − δ) and, for all sufficiently
large n, there exists a σn such that Φn

a(σ) = 0 and Pr(a,¬pivi|β) converges to Z ′′β for n → ∞.
Similarly if we consider Pr(a,¬pivi|α) = (Z∗

α+δ′) and Pr(a,¬pivi|α) = (Z∗
α−δ′) for δ′ ∈ [0, δ].

For sufficiently large n this constitutes a span of strategies.
Now fix Pr(a,¬pivi|α) = (Z∗

α+ δ) and Pr(a,¬pivi|α) = (Z∗
α− δ) then, for sufficiently large

n, call it n1, there exists σn1 such that Φn1
a (σ) = 0 and Φn1

b (σ) < 0 and another σn1 such
that Φn1

a (σ) = 0 and Φn1
b (σ) > 0 and by continuity there exists σn1 such that Φn1

a (σ) = 0 and
Φn1
b (σ) = 0. We now repeat the process starting with δ2 and −δ2 and we have n2 > n1 and

σn2 such that Φn2
a (σ) = 0 and Φn2

b (σ) = 0. We do this for any δm and −δm and construct
nm > nm−1 and we have a subsequence of committee sizes and equilibria with associated Zn∗

α

and Zn∗
β converging to Z∗

α and Z∗
β . We complete the sequence by using the method that we

used for n1 for all games with committee sizes between n1 and n2, the method for nm−1 for all
games with committees of sizes between nm−1 and nm.

Lemma 5. The sequence of decision probabilities, (Zn
α , Z

n
β ), associated to any sequence of

equilibria of the finite games, (σn), must converge to the set of limit outcomes.

Proof of Lemma 5: Let (σn) be a sequence of equilibria of the finite games and suppose
(Zn

α , Z
n
β ) = (Prn(a|α), (Prn(a|β)) is the associated sequence of decision probabilities. Suppose

that there exists ε > 0 such that there is an infinite subsequence of terms (Prn(a|α), (Prn(a|β))
which are at least ε away from any pair (Zα, Zβ) that is a limit outcome. Because all the
terms in this subsequence are bounded above and below (by (0, 0) and (1, 1)), it must have a
convergent subsequence. Call it’s limit point (Yα, Yβ). by construction we thus have that for
any limit outcome (Zα, Zβ), ||(Zα, Zβ)− (Yα, Yβ)|| ≥ ε. So (Yα, Yβ) must violate at least one of
the four conditions that define a limit outcome. Suppose that it violates (1a). That is, suppose
that Φa(Yα, Yβ) > 0 yet Yα < 1. Let h = 1− Yα This means that for all sufficiently large n we
must have Φa(Z

n
α , Z

n
β ) > 0 and Zn

α < 1−h/2, but this is a contradiction, since Φa(Z
n
α , Z

n
β ) > 0
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implies that σn(a) = 1 and thus Zn
α → 1. The other 3 cases are anlogous.

Proposition 4 (Theorem 1 applies generically). The set of parameter vectors with the
property that there exists some limit outcome (Zα, Zβ) at which Theorem 1 does not apply has
measure 0. That is, Theorem 1 holds generically in R

8.

Proof of Proposition 4: The only cases to which the argument presented in Lemmas 2,3
and 4 do not apply involve one of the following two conditions:

1. A vector of parameters (k(vi, x, ω)) and a limit outcome such that only one of Φsi(Zα, Zβ)

(si = a or si = b) is 0, Zα �∈ (0, 1) and Zβ �∈ (0, 1).

2. A vector of parameters (k(vi, x, ω)) and a limit outcome such that only one of Φsi(Zα, Zβ)

(si = a or si = b) is 0, (call it Φs), only one of Zα or Zβ is interior (call it Zω) and the
multiplier of Zω in Φs is 0.

3. Both Φsi(Zα, Zβ) = 0 (for si = a and si = b) and either (or both) Zα �∈ (0, 1) or
Zβ �∈ (0, 1).

We proceed by showing that the set of vectors (k(vi, x, ω)) for which each of the three
conditions above can hold is a subspace of R8 of dimension strictly less than 8, and therefore
of measure 0 in R

8. In fact, we will show the stronger property that the sets of vectors (kω,x)
for which each of the conditions above can hold is a subspace of R4 of dimension strictly less
than 4, and therefore of measure 0 in R

4. Since the union of finitely many sets of measure 0 is
of measure 0 the result follows.

(Condition 1) Let s be such that Φs(Zα, Zβ) = 0. Assume that Zα = 0 and Zβ = 0. Then
it follows that Pr(α|s)kα,b − Pr(β|s)kβ,b = 0 which given that Pr(α|s) > 0 and Pr(β|s) > 0

defines a subspace of dimension 3 in R
4. Similarly in case Zα = 1 and Zβ = 0 then the

analogous condition is Pr(α|s)kα,a − Pr(β|s)kβ,b = 0. In case Zα = 0 and Zβ = 1 then it is
Pr(α|s)kα,b−Pr(β|s)kβ,a = 0. In case Zα = 1 and Zβ = 1 then it is Pr(α|s)kα,a−Pr(β|s)kβ,a =

0.

(Condition 2) Let s be such that Φs(Zα, Zβ) = 0. Assume that Zα is interior and the
multiplier of Zα in Φs is 0. Then kα,a − kα,b = 0 which defines a subspace of dimension 3 in
R
4. Similarly, if Zβ is interior and the multiplier of Zβ in Φs is 0 then kβ,a − kβ,b = 0.

(Condition 3) Suppose that Φa(Zα, Zβ) = 0 and Φb(Zα, Zβ) = 0 If kα,a − kα,b = 0 or
kβ,a − kβ,b = 0 then as above we have subspaces of dimension 3 in R

4. Otherwise, suppose
Zα �∈ (0, 1) = 0. It follows by solving for Zβ in each of the equations Φa(Zα, Zβ) = 0 and
Φb(Zα, Zβ) = 0, that,

Zβ =
Zα(kα,a − kα,b)Pr(α|a)− kβ,bPr(β|a) + kα,bPr(α|a)

(kβ,a − kβ,b)

=
Zα(kα,a − kα,b)Pr(α|b)− kβ,bPr(β|b) + kα,bPr(α|b)

(kβ,a − kβ,b)
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If Zα = 0, then kα,b(Pr(α|a)−Pr(α|b))+kβ,b(Pr(β|b)−Pr(β|a)) = 0. Given that Pr(α|a) >
Pr(α|b) and Pr(β|b) > Pr(β|a), this equation defines a 3 dimensional subspace in R

4. Similarly,
if Zα = 1, then kα,a(Pr(α|a)− Pr(α|b)) + kβ,b(Pr(β|b)− Pr(β|a)) = 0.

If on the other hand Zβ �∈ (0, 1) = 0 we solve for Zα in each of the equations Φa(Zα, Zβ) = 0

and Φb(Zα, Zβ) = 0, and proceed just as above.

The following Proposition, which relies on Proposition 4, is the basis for Lemma 1 in the
main text.

Proposition 5. Given any vector of parameters (k(vi, x, ω)) at which Theorem 1 does
not apply for limit outcome (Zα, Zβ) = (1, 0), and for any ε, there exists a vector of param-
eters (k′(vi, x, ω)) at which Theorem 1 does apply for (Zα, Zβ) = (1, 0) and such that (1)
Φa(Z = (1, 0)) < 0 or Φb(Z = (1, 0)) > 0 and (2) ||(k(vi, x, ω))− (k′(vi, x, ω))|| < ε.

Proof of Proposition 5: Note that,

Φsi(Zα = 1, Zβ = 0) = kα,aPr(α|si)− kβ,bPr(β|si)]

Suppose that Φa(Zα = 1, Zβ = 0) �= 0 and Φb(Zα = 1, Zβ = 0) = 0. Then by perturbing
the parameters just slightly so that k′β,b = kβ,b − δ (with δ > 0) we can guarantee that at the
new parameters, Φa(Zα = 1, Zβ = 0) �= 0 and Φb(Zα = 1, Zβ = 0) > 0. It follows that since
both inequalities hold strictly at these new parameters, Theorem 1 holds for (Zα, Zβ) = (1, 0)

and Φb(Zα = 1, Zβ = 0) > 0.

Analogously, suppose that Φa(Zα = 1, Zβ = 0) = 0 and Φb(Zα1, Zβ = 0) �= 0.Then by
perturbing the parameters just slightly so that k′α,a = kα,a − δ (with δ > 0) we can guarantee
that at the new parameters, Φa(Zα = 1, Zβ = 0) < 0 and Φb(Zα = 1, Zβ = 0) �= 0. It
follows that since both inequalities hold strictly at these new parameters, Theorem 1 holds for
(Zα, Zβ) = (1, 0) and Φa(Zα = 1, Zβ = 0) < 0.

Suppose that Φa(Zα = 1, Zβ = 0) = 0 and Φb(Zα1, Zβ = 0) = 0. Then by perturbing the
parameters just slightly so that k′β,b = kβ,b − δ (with δ > 0) we can guarantee that at the new
parameters, Φa(Zα = 1, Zβ = 0) > 0 and Φb(Zα = 1, Zβ = 0) > 0. It follows that since both
inequalities hold strictly at these new parameters, Theorem 1 holds for (Zα, Zβ) = (1, 0) and
Φb(Zα = 1, Zβ = 0) < 0.

By Proposition 4, with the above we have covered all possible parameter vectors at which
Theorem 1 does not apply for limit outcome (Zα, Zβ) = (1, 0).

Remark: As stated in Lemma 1 of the main text it follows from Proposition 5 that
information aggregation cannot be robust at payoff vectors for which Theorem 1 does not
apply.
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Proof of Lemma 1. It is clear that if Theorem 1 applies to a given payoff vector at which
(Zα, Zβ) = (1, 0) as a limit outcome at which Φa(Z = (1, 0)) > 0 and Φb(Z = (1, 0)) < 0, then
this vector supports robust information aggregation.

By Theorem 1 any vector of parameters (kω,x) to which it applies and which does not have
(Zα, Zβ) = (1, 0) as a limit outcome does not support information aggregation to begin with,
and therefore cannot support robust information aggregation either. Furthermore for robust
information aggregation to be supported by payoff vectors which do have (Zα, Zβ) = (1, 0)

as a limit outcome it must be the case that Φa(Z = (1, 0)) > 0 and Φb(Z = (1, 0)) < 0. If
this is not the case then in any open ball around (kω,x) there will be a payoff vector (k′ω,x)
under which either Φa(Z = (1, 0)) < 0 or Φb(Z = (1, 0)) > 0 and to which Theorem 1 applies
(because it applies generically in the payoffs’ space as shown by Proposition 4 above). It follows
that (Zα, Zβ) = (1, 0) is not a limit outcome for (k′ω,x). By the argument above (k′ω,x) does
not support information aggregation, and therefore (kω,x) does not support robust information
aggregation.

The only possible concern is thus with payoff vectors (kω,x) at which Theorem 1 does not
apply. As shown by Proposition 5 above, in any open ball around (kω,x) there must exist payoff
vectors to which Theorem 1 does apply and at which at least one of Φa(Z = (1, 0)) < 0 or
Φb(Z = (1, 0)) > 0 holds. It follows that robust information aggregation is not supported by
(kω,x).

Proof of Proposition 3. Proposition 3 follows from Lemma 1 and Theorem 1, which
show that to robustly aggregate information, it must be the case that Φa(Z = (1, 0)) > 0 and
Φb(Z = (1, 0)) < 0. Using the expressions for Φa(Z = (1, 0)) > 0 and Φb(Z = (1, 0)) < 0 and
simplifying gives the condition for robust information aggregation.

Proof of Theorem 2. Consider any set of vote-contingent payoffs {kω,vi} with kα,a, kβ,b >

0. Next, consider a prior Pr(α) such that (1−Pr(α))
Pr(α) �= kα,a

kβ,b
. Note that

(
Pr(β|si = a)

Pr(α|si = a)
,
P r(β|si = b)

Pr(α|si = b)

)
=

(
(1− Pr(α))ε

Pr(α)(1− ε)
,
(1− Pr(α))(1− ε)

Pr(α)ε

)
,

and thus for ε′ sufficiently high we have that

kα,a
kβ,b

/∈
(
(1− Pr(α))ε′

Pr(α)(1− ε′)
,
(1− Pr(α))(1− ε′)

Pr(α)ε′

)

By Proposition 3, this implies that information aggregation fails for {ε′, P r(α)}.
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